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1. Executive summary 
 

Within the IMPLICC project, five partner institutes from France, Germany and Norway have studied 
the effectiveness, side effects, risks and economic implications of climate engineering through 
different solar radiation management techniques suggested to limit climate change. The main tools 
used in these studies were state-of-the-art numerical Earth system models (in some cases augmented 
by specific treatments of atmospheric aerosols and chemistry) and an economic model. One central 
question was what climate would result from the application of three different CE techniques: the 
reduction of solar irradiance (through space mirrors); the enhancement of the reflection of solar 
radiation through stratospheric sulfate aerosols; and the manipulation of marine clouds through 
injection of sea salt. One novel aspect of IMPLICC in the context of climate engineering research 
was the implementation of a model intercomparison study in order to identify robust climate 
response patterns. 

In an idealized experiment with large greenhouse gas forcing balanced globally by the reduction of 
solar irradiance it was shown that it may be possible to compensate the increase of global mean 
temperature. However, the increase in global total precipitation that is expected in scenarios with 
enhanced greenhouse gas concentrations would be overcompensated by solar radiation management: 
a geoengineered climate would have less precipitation than a natural climate of the same global mean 
temperature. The model intercomparison showed that precipitation decreases – under the chosen 
scenarios - would particularly affect large land masses in the mid-latitudes of the Northern 
hemisphere, i.e. Canada and the US, central and northern Europe and Asia. The simulation of a 
scenario with a much smaller degree of geoengineering, where just the increase of climate forcing 
through a moderate greenhouse gas emission scenario after the year 2020 would be compensated, 
showed, not surprisingly, a much smaller climate impact. Because of the weakness of the forcing, the 
regional patterns of the simulated responses are also less robust than under strong forcing. It was, 
however, clearly shown that an abrupt termination of climate engineering efforts would lead to very 
rapid climate change. Numerical results of these simulations are made available to the international 
scientific community for further exploitation that is currently ongoing for example within the 
international “Geoengineering Model Intercomparison Project” (GeoMIP). 

The estimation of economic implications of climate change and climate engineering on long time-
scales has obvious limitations. However, our simulations suggest that climate engineering under a 
moderate emission scenario may not be economically advantageous. This could be different under 
high-emission scenarios, but also it is then unclear if the economic importance of side-effects would 
become significant. 

IMPLICC has also made progress on microphysical processes involved in the aerosol-based radiation 
management methods, which help determine their effectiveness. It has become clear that the 
effectiveness of the methods depends strongly on the implementation, e.g. on the size of emitted sea 
salt particles. However, uncertainties concerning the amount of aerosol necessary to reach a certain 
climate effect remain. 

It has become clear during the course of the project that some of the remaining uncertainties 
concerning implications of climate engineering are caused by limited understanding of climate 
processes in general, which are not necessarily specific to climate engineering. The manipulation of 
marine clouds, for example, is based on aerosol-cloud interaction processes which are one of the 
major open questions of climate research, independent of the origin of aerosols. Injecting sulfur into 
the stratosphere would not only have radiative but also dynamical effects. Dynamical stratosphere-
troposphere coupling would need to be better understood in order to fully appreciate the effects of 
such climate engineering. 

Finally, it needs to be noted that the climate response is only one aspect that has to be considered 
when the implementation of climate engineering techniques is discussed. Other potential side effects 
specific to some methods, as well as political, ethical, legal and further economic implications also 
need to be taken into account.  
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2. Description of project context and objectives 
 

The central goal of the IMPLICC project was to better understand effectiveness, side effects and 
economic implications of climate engineering (or “geoengineering”) methods suggested to limit 
climate change. The next two sections describe the scientific context and project objectives as given 
at the beginning of the project in 2009. However, since then the discussion of and scientific research 
on climate engineering has increased considerably. Therefore, Section 2.3 very briefly describes 
changes of the context and with it also a modification of some of the goals that occurred during the 
duration of the project.  

2.1 Scientific and societal context 

There is increasing scientific evidence indicating that anthropogenic emissions of greenhouse gases 
(GHG) have a significant impact on Earth’s climate. In its fourth assessment report (AR4), the 
Intergovernmental Panel for Climate Change (IPCC) has expressed “very high confidence that the 
global average net effect of human activities since pre-industrial times has been one of warming” 
(IPCC, 2007a). In the same report, best estimates were given for the projected global average future 
temperature increases up to the last decade of the 21st century with respect to 1980-1999. Depending 
on the assumed emission scenario these best estimates lie in the range of 1.8 to 4.0 K (IPCC, 2007a). 
Such a substantial climate change is expected to have tremendous implications for humans and the 
biosphere in general (IPCC, 2007b).  

Strategies to limit projected climate change in case of GHG reduction failure  

With the Kyoto protocol, agreed on in 1997, the United Nations took a first step to limit the increase 
of the atmospheric content of GHGs by limiting anthropogenic emissions. Exploratory engineering 
studies are also underway to prevent carbon dioxide (CO2) from entering the atmosphere by applying 
carbon capture and sequestration in long-term underground or sub-seafloor storage facilities. Despite 
these attempts, carbon dioxide concentrations in the atmosphere have continued to rise, due to 
accelerating anthropogenic emissions, and the radiative forcing of carbon dioxide increased by 20% 
from 1995 to 2005 (IPCC, 2007a). Consequently, there is a growing urgency to design new measures 
for limiting climate change to an acceptable level. As an alternative to emissions reductions – 
whether by reduced energy consumption, by improved efficiency, or by carbon capture and 
sequestration at the sources - and to prepare for possible failure of emission reduction attempts 
through international agreements, the public and scientific communities have for many years 
discussed the possibility of “climate engineering”, or the deliberate manipulation of the Earth system 
to manage the climatic consequences of human population and economic expansion (Schneider, 
2001).  A couple of years ago, this discussion has been intensified, especially in the scientific 
community, due to an article by Paul Crutzen, in which he suggested considering and investigating 
methods of geoengineering Earth’s climate in order to provide sound scientific support to policy 
makers for climate change mitigation decisions (Crutzen, 2006). 

Crutzen (2006) suggested studying the injection of large amounts of sulphur dioxide in the Earth’s 
stratosphere (situated at ~15-50 km altitude). Sulphate aerosol would build up, subsequently 
reflecting part of the solar radiation, thus changing the atmospheric energy budget and decreasing the 
temperature at the Earth’s surface.  This is analogous to the climate effect associated to the injection 
of particulate matter (and in particular sulphate aerosols) into the stratosphere through volcanic 
eruptions. For example, the eruption of Mt. Pinatubo in 1991 caused a reduction of global average 
surface temperature that was recognizable for more than 2 years afterwards and reached a maximum 
of about 0.5 K (Dutton and Christy, 1992). 
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Several other geoengineering methods to manipulate the radiative budget of the Earth have been 
suggested, e.g., reducing the incoming solar radiation through space-borne reflectors at the 
Lagrangian point, modifying low level marine cloudiness via the injection of additional condensation 
nuclei (e.g. Bower et al., 2006), and modifying the surface albedo (Gaskill and Reese, 2003). Among 
the discussed methods aiming at the removal of CO2 from the Earth system is the fertilization of the 
oceans with iron, which is intended to lead to higher marine productivity and subsequent carbon 
sequestration by sedimenting ocean biomass (e.g. Buesseler and Boyd, 2003). 

Side effects of geoengineering solutions 

All these suggestions have been criticized heavily, in particular as they try to cure the symptoms of 
global climate change and not its causes. In the case of engineering radiation it might be possible to 
limit global temperature increase, but acidification of oceans as a consequence of increasing CO2 
levels would not be stopped. Another problem is the long lifetime of atmospheric CO2 that would 
make it necessary to sustain geoengineering for periods of hundreds to thousands of years if no other 
technical way to remove CO2 from the atmosphere were to be found.  

On the positive side, a part of the long-term perturbation of the carbon cycle might be suppressed by 
geoengineering if positive feedbacks between global warming and the carbon cycle are as important 
as suggested in the recent IPCC report. Through such feedback mechanisms, the CO2 concentration 
might actually be reduced by geoengineering.  However, it is also possible that other, as yet 
uncharacterised feedbacks could result in an increase in CO2 as a result of geoengineering.  
Substantial scientific research is needed to better understand such feedbacks. 

Political and psychological concern exists that considering geoengineering might distract or prevent 
people from studying and investing in options to reduce the emission of GHGs, while they are 
expecting a geoengineering solution to climate change problems. The possibly enormous costs 
related to geoengineering options might well be better invested at an early stage in limiting GHG 
emissions. 

Cicerone (2006) proposed an increase in scientific research on geoengineering to analyse expected 
side effects and search for unexpected ones. Additional stratospheric sulphur, e.g., might have a 
detrimental effect on the ozone layer. Bengtsson (2006), on the other hand, has raised concern about 
inaccuracies of current numerical Earth systems models that limit our capability to predict climate 
and to adequately study the consequences of geoengineering. Nevertheless, climate models are 
presently the only tools available for studying the climate evolution of the future under different 
emission and geoengineering scenarios, and as pointed out in the same issue (Lawrence, 2006), “if 
we do not conduct careful research now, we will not be prepared to advise politicians on how to best 
approach large-scale geoengineering applications – including providing sound information on the 
various risks involved, and on which ideas should not be pursued further”.  

 

2.2 Specific scientific and technical objectives of  the proposal 

Given the amplitude of the current discussion on novel options to limit climate change, it is 
necessary to study the possible efficiency, risks and implications related to these options. Numerical 
models are the only possible tool for performing such initial scientific studies, since without further 
information, any large-scale experiments on the atmosphere would raise serious ethical concerns. 
The IMPLICC consortium proposed to perform model studies for three suggested options to engineer 
solar radiation. The focus was on 

a) space borne reflectors (placed at the Lagrangian point between the Earth and sun), 

b) sulphur injections into the stratosphere, and 
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c) engineering of low level marine clouds through sea salt injections. 

Before IMPLICC, such studies had only been performed with numerical models that are too 
simplified to assess important possible risks. The IMPLICC approach was to use state-of-the-art 
Earth system models that (in particular) incorporate interactions between aerosols, radiation, clouds, 
air chemistry, the terrestrial biosphere, and the carbon cycle. Because of the limits and uncertainties 
of numerical models (as pointed out by Bengtsson, 2006), it was proposed to perform numerical 
studies in a multi-model setup where differences between the models can be taken as a first estimate 
of the uncertainty of the results. It was planned to base the simulations on climate change scenarios 
prepared for the fifth assessment report of the IPCC.  

The objectives concerning the three methods mentioned above were to estimate their effectiveness 
and their side effects, and to contribute finally to a better understanding of their economic, legal, and 
ethical implications.  

Specifically, IMPLICC was designed to contribute to answering the following questions: 

a) Effectiveness 

- How can geoengineering be applied in an efficient way? (At which altitude and geographical 
location should sulphur be injected into the stratosphere? Where should additional 
condensation nuclei be injected into the troposphere?)  

- What is the amount of geoengineering necessary to limit the future global average temperature 
increase to a given target level, e.g., a maximum of 2 degrees? 

- What is the radiative forcing efficiency (per mass emitted) and global “cooling” potential of the 
different substances suggested for geoengineering? What are the associated indirect radiative 
effects? Will the forcing efficiency of a given substance be different in a different (future) 
climate (e.g. under future levels of GHGs)? 

- How quickly can the effect of a given geoengineering method be reversed in case of undesirable 
side effects? 

b) Side effects 

- How will stratospheric ozone levels and their future evolution be affected by stratospheric 
sulphur injections? 

- What are the effects of a massive input of sulphur or chlorine species on tropospheric chemistry 
(acid rain, photo oxidant levels)? 

- What are the spatial effects of eventually inhomogeneous manipulation of the radiative budget 
on hydrology (evaporation and precipitation patterns) and the terrestrial biosphere? 

- What is the effect of an increase in diffuse radiation due to higher aerosol loads on vegetation? 

- How do other photochemical processes in the troposphere and stratosphere change in response 
to the introduction of a given geoengineering substance (e.g., changes in photolysis rates, 
decreases in N2O and CH4, changes in UV flux due to the presence of SO2)?  

- Can we identify any unexpected significant changes in the climate system in the course of the 
continued application of geoengineering methods together with high GHG levels?  

- What are the risks associated with a sudden switch-off of geoengineering (e.g., overshooting)? 

c) Economic implications 

- Based on the present state of knowledge, what are the ranges of costs for implementing 
geoengineering technologies? 
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- How are the benefits in terms of reduced climate change distributed across world regions, and 
what are the uncertainties about these benefits? 

- How do the benefits and costs of geoengineering compare with the costs and benefits of 
emissions control? 

Based on preliminary estimates of effectiveness it was planned to define numerical climate model 
experiments to assess climate effects and side effects of the techniques. Results of these experiments 
were intended as input for the economic analysis to answer the questions listed under c), and to be 
analyzed with respect to the remaining questions concerning effectiveness and side effects. 

It was, however, clear from the start of IMPLICC that not only scientific and economic aspects are 
related to geoengineering, but also legal, political, and ethical issues. Properly addressing these 
questions was beyond the capabilities of this consortium. Instead, the main objective with respect to 
these issues was to foster their discussion. 

2.3 Development of the context and objectives since  2009 

The timeliness of the IMPLICC project is evident given the development of the scientific and 
societal interest in the topic of climate engineering since 2009. One clear evidence for the interest in 
the subject is the number of CE assessments published in the last three years and aimed at the 
broader public and decision makers. To our knowledge, the first such report was published by the 
UK Royal Academy (“Geoengineering the climate: science, governance and uncertainty”, Shepherd 
et al., 2009), followed, e.g. by a study commissioned by the German ministry of education and 
science (“Large-Scale Intentional Interventions into the Climate System? – Assessing the Climate 
Engineering Debate”, Rickels et al., 2011), and a “Technology assessment: Climate Engineering” 
(GAO, 2011) by the US Government Accountability Office. 

The IMPLICC strategy of a model intercomparison study to identify potential robust results has 
received interest in a broader community beyond just the IMPLICC partners. Our project has been 
instrumental in the development of the internationally coordinated GeoMIP activity (Kravitz et al., 
2011), and the IMPLICC partners are still contributing strongly to GeoMIP also beyond the end of 
the project. The numerical scenarios developed jointly for IMPLICC and GeoMIP are based on the 
climate change scenarios simulated in the context of the CMIP5 model intercomparison activity 
(Taylor et al., 2011) for the fifth assessment report (AR5) of the IPCC that will be published in 2013, 
and where, to our knowledge, IMPLICC results will be included. 

Scientific research concerning climate engineering has made considerable progress during the last 
three years at many other research centers. However, none of the main IMPLICC objectives needed 
to be re-designed in the light of new knowledge. The analysis of the numerical simulations focussed, 
however, slightly stronger than maybe intended originally on the question how an engineered climate 
would look like, as it became more and more obvious during the course of the project that solar 
radiation management may limit the global temperature increase but not at the same time exactly 
restore a historical climate.  
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3. Description of the main scientific results/foregrounds 
 

This report will concentrate on results obtained during the second reporting period of the project 
(months 19 to 39). Results of the first reporting period will be mentioned only briefly where 
appropriate. For more details the reader is referred to the intermediate project for months 1 to 18 and 
to the individual reports of the specific work packages of IMPLICC: Report on effects and side 
effects of space-borne reflectors (Deliverable D2.3), Report on the effects and side effects of 
deliberate injection of sulphur containing substances into the atmosphere (D3.3), Report on the 
effects and side effects of deliberate injection of sea salt into the atmosphere (D4.4), Final report on 
economic implications (D5.2).  

3.1 The scientific approach 

One central question that guided the work within IMPLICC was the following: What would a climate 
engineered through SRM look like, in terms of multiple aspects of characterizing climate (not just 
global mean surface temperature)? As for any other question related to the future climate, numerical 
climate models are useful tools to tackle this question. Given the uncertainties in many details of the 
formulation of climate models, the community of climate researchers has organized model 
intercomparison projects (MIPs) in particular to project the future climate under specified 
greenhouse gas emission scenarios. Comparing results from several models, each performing exactly 
the same well-defined numerical experiments, allows one to identify which characteristics of a 
projected future climate appear to be robust, and hence are likely to be based on well-understood 
physical mechanisms. Climate projections that differ strongly among the participating models 
depend on the differences in the formulation of the models and need to be considered as highly 
uncertain.  

IMPLICC implemented such a model intercomparison project to better understand the climate 
response to potential future SRM. The idea was to define SRM scenarios and simulate them with 
three state-of-the-art Earth system models (ESMs) operated by the IMPLICC partners: IPSL/CEA 
(model: IPSL-CM5A), MPI-M (model: MPI-ESM), and UiO (model: NorESM). However, given that 
wider interest in such a numerical modelling exercise evolved once IMPLICC was established, 
IMPLICC joined forces with the larger international community, and an IMPLICC workshop in 2009 
was used to define numerical experiments under the umbrella of GeoMIP, the geoengineering model 
intercomparison project (Kravitz et al., 2011).  

The IMPLICC project concentrated on the following three SRM methods: 

Table 1: Main characteristics of the ESMs participitating in the model intercomparison studies. The first 
three models are IMPLICC models. Results from the HadGEM2-ES are included in the analysis of the G1 
scenario of section 3.2.Table taken from Schmidt et al. (2012). 
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a) space borne reflectors (e.g., placed at the Lagrangian point between the Earth and the Sun), 

b) sulfur dioxide or sulfuric acid injections into the stratosphere, 

c) engineering of low level marine clouds through sea salt injections. 

The impact of method a), realized in the models by reducing the solar constant, has been studied via 
balancing the radiative forcing of an abrupt fourfold increase of the pre-historical CO2 concentration 
(GeoMIP scenario G1). Climate effects of methods b) have been studied in multi-model simulations 
following the GeoMIP scenario G3 (Kravitz et al., 2011). This scenario builds on the CMIP5 (Taylor 
et al., 2012) moderate greenhouse gas emission scenario RCP4.5 simulated by many climate 
modelling centers for the next IPCC assessment report. Under G3 it is assumed that SRM would be 
employed to keep the future level of climate forcing from GHGs at the level reached in the year 
2020, i.e., to balance the future climate forcing from additional GHGs by climate engineering. This is 
realized through increasing sulfur emission rates in the stratosphere until the year 2070. In order to 
study the potential rapid climate change when SRM is discontinued, the G3 scenario is continued 
beyond 2070, but with the SRM measures switched off. Method c) is studied under a scenario 
identical to G3 but using the manipulation of clouds instead of sulfate aerosols. This scenario, called 
G5, is not yet included in the GeoMIP project, rather only within IMPLICC. 

Besides the pure climate model studies, effectiveness and implications of methods b) and c) have 
also been studied using specific numerical models including atmospheric chemistry (the EMAC 
model operated at MPI-C) and aerosols (NorESM). Furthermore, economic modelling is used to 
study potential economic effects of SRM in different regions of the world based on the climate 
model results.    

 

3.2 CE through the reduction of solar irradiance – What would an engineered 
climate look like? 
Changes in greenhouse gas concentrations and solar radiation have different impacts on the global 
radiation budget. Greenhouse gases influence the long-wave terrestrial radiation relatively 

   

 

 

 

0 

forcing from stratospheric aerosols 

             

Figure 1: Simulation strategies in the GeoMIP/IMPLICC numerical experiments G1 and G3. Figures are 
adapted from Kravitz et al. (2011). The simulation strategy for experiment G5 is identical to G3 except for 
the solar radiation management being realized via a manipulation of marine clouds through sea salt 
emissions and not through stratospheric aerosols. 
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homogeneously on the global scale. Dimming the sun, for example by installing reflectors in outer 
space, affects the short-wave part of the radiation budget. The strongest effect can be found where 
solar radiation is most intense – thus, all year round in the tropics and during summer at the higher 
latitudes. 

All three IMPLICC models mentioned above, plus the HadGEM2 model of the United Kingdom Met 
Office (UKMO), have run the same three scenarios: 1) starting from preindustrial conditions and 
allowing the simulation to continue on  with the pre-industrial conditions; 2) applying a fourfold 
increase in the CO2 concentration (“global warming”); and 3) in addition to the CO2 increase, 
applying a reduced solar constant at the same time (“dimming the sun”) to balance the total global 
radiative forcing. This G1-scenario (Fig. 1) of IMPLICC/GeoMIP is not realistic since such a sudden 
CO2 increase has not happened and is not expected to happen. However, a radiative forcing that 
corresponds to four times the pre-industrial CO2 concentration by the end of the 21st century cannot 
be ruled out, according to the business-as-usual scenario RCP8.5. By using such an extreme scenario 
it is made certain that the simulated climate signals clearly stand out from natural climate variability. 

In many respects, the models involved react robustly to this very drastic radiative forcing. In the 
model experiments, the effect of the increase in the greenhouse gas concentration on the global 
radiation budget is balanced by the reduction of solar irradiance – accordingly, the global mean 
temperature remains at a pre-industrial reference level. Interestingly, 25% more SRM than expected 
is required since a reduced global cloud cover appears in the scenario, warming the planet. Also, the 
temperature does not stay at the reference level all over the world but is generally slightly higher than 
in the reference simulation at the higher latitudes and over continents (up to 1°C) and lower in the 
tropics and over the oceans as can be seen from Fig. 2. Compared to a quadrupling of CO2, however, 
the temperature changes are modest, because unmitigated quadrupling of CO2 leads to a global mean 
surface temperature increase of 5 to 6°C in the models. 

The G1 scenario effects on precipitation are significantly stronger: the SRM applied together with 
the quadrupled CO2 results in a decrease in the global mean precipitation by about 5%. In the 
simulation in which quadrupled CO2 is not compensated by SRM, precipitation, on the contrary, 
would increase by about 9%. On the regional scale, changes in precipitation can be even stronger in 

Table 2: Comparison of multi-model mean responses to the forcings in G1 and abrupt4xCO2 simulations, 
respectively, with respect to piControl. Responses are calculated for the individual models both in terms of 
spatially averaged differences and in terms of root mean square differences, and then averaged over the 
four ESMs. RMS differences are calculated after interpolation of the results from the individual models to a 
192x96 grid. Besides global mean values also averages over land surface only are provided. Table from 
Schmidt et al. (2012). 
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the SRM scenario than only due to increased greenhouse gas concentrations. While in the latter case 
a clear reduction in precipitation, e. g. in the Mediterranean is simulated, this pattern shifts 

northwards when the solar dimming is applied. Over the vast land masses of northern Eurasia as well 
as over North and South America, a large-scale decrease in precipitation by more than 10% is 
simulated for this G1 scenario (see Fig. 3).  

Table 2 presents multi-model average responses in near-surface air temperature and precipitation 
from both scenarios (G1 and abrupt4xCO2) in terms of both mean and root mean square (rms) 
differences. Additionally, not only global means but also averages over all land surfaces are 
presented. It should be noted that the abrupt4xCO2 simulation is still not in equilibrium during years 
101 to 150 which are used here. Table 2  shows that in both scenarios the temperatures over land 
areas increase stronger than in the global mean, but in the case of G1 the average temperature 
response over land is small (0.4 K). When expressed as rms differences multi-model mean changes 
of SAT under G1 are about an order of magnitude smaller than under abrupt4xCO2. This is true for 
both land and global mean responses. Table 5 confirms that global mean precipitation is much less 
balanced through the reduction of solar irradiance than temperature but the increase through 
increased GHGs is overcompensated in G1. The magnitude of precipitation responses in the two 
scenarios is in particular similar when only land masses are consideredonly (-6.3% in G1, vs. 8.3% in 
abrupt4xCO2). In terms of rms differences the CE in G1 reduces the precipitation anomalies caused 
in abrupt4xCO2 by a factor of 2.6 in the global mean and 2.2 over land surfaces.  

      
Figure 2: Differences in near surface air temperature (K) between the simulations G1 (with climate 
engineering) and the preindustrial control run, averaged over the four ESMs. In regions with filled colour 
shading all models agree in the sign of the response. 
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The model intercomparison hence shows that climate engineering by using solar radiation 
management methods (here: reducing the solar constant, which can be compared to installing 
reflectors in outer space) can reduce some aspects of climate change globally, but will not restore a 
historical climate state such as the one of pre-industrial times. It will instead create an entirely new 
climate. Even if global mean temperatures could be lowered to the pre-industrial level, regional 
patterns of temperature still change, and the global amount and regional patterns of precipitation 
would change significantly. Further details of this intercomparison study are given by Schmidt et al. 
(2012). 

 

 

       

Figure 3: Differences in precipitation (mm/day) between the simulations G1 (with climate engineering) 
and the preindustrial control run, averaged over the four ESMs. In regions with filled colour shading all 
models agree in the sign of the response. 
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3.3 Implications of CE through injections of sulfur  into the stratosphere 
Arguably the most discussed SRM method is the injection of large amounts of sulfur dioxide or 
sulfuric acid into the Earth’s stratosphere (situated at ~15-50 km altitude). The sulfur dioxide or 
sulfuric acid is then transformed into sulfate aerosol particles, which would build up, subsequently 
reflecting additional solar radiation, thus changing the atmospheric energy budget and decreasing the 
temperature at the Earth’s surface. This is analogous to the climate effect associated with the 
injection of sulfur dioxide into the stratosphere through volcanic eruptions. For example, the eruption 
of Mt. Pinatubo in 1991 caused a reduction of global average surface temperature that reached a 
maximum of about 0.5°C. 

Questions with respect to this method concern: the resulting climate; the quantification of the 
expected side effects on stratospheric ozone; and the effectiveness of the method, i.e. the amount of 
sulfur needed to reach a certain climate effect. 

3.3.1 Microphysical implications to the effectiveness of the injection of sulfur 
particles  
With respect to the amount of sulfur needed, Niemeier et al. (2011) showed in a numerical study 
within IMPLICC that simple extrapolation from volcanic eruption data may not be accurate enough 
to estimate the amount of sulfur necessary to obtain a specific cooling. The complex aerosol 
microphysics may lead to a faster than expected removal from the atmosphere and hence an 
underestimation of the necessary amount of sulfur. However, a comparison with another study 
(Heckendorn et al., 2009) shows that even complex aerosol calculations are still highly uncertain. 

With another model operated at MPI-C, Benduhn and Lawrence (2012) have studied specific aspects 
of sulfur injections. They showed that although sedimentation plays only a secondary role in 
determining the aerosol residence time in the stratosphere, it does have an important role in the 
vertical distribution of the aerosol in the stratosphere as given by particle size. For that reason, a 
numerically diffusive scheme may considerably overestimate the vertical ascent of larger particles in 
the stratosphere, and thus, in conjunction with particle evaporation, lead to an underestimation of the 
total geoengineered aerosol load. Because of the deficiencies of existing sedimentation schemes, a 
new scheme with very low numerical diffusivity has been developed, implemented in the model and 
then used in the numerical experiments.  

Furthermore, they showed that the injection of sulfur either as sulfuric acid or as sulfur dioxide 
would differ strongly with respect to the formation and growth of the sulfate particles, and finally 
with respect to their radiative effects (Fig. 4). For the release of sulfuric acid into the stratosphere to 
be simulated faithfully in a global model, the subscale character of particle formation needs to be 
taken into account, and the corresponding injection parameters should be chosen carefully. The 
particles that rapidly form in the expanding plume after injection have to be small enough to limit 
sedimentation losses, yet large enough to limit upward transport, which results in more rapid 
dispersion and eventual loss through the Brewer-Dobson circulation, as well as an enhanced potential 
to cause ozone depletion. In contrast to releasing sulfuric acid, the release of sulfur dioxide would be 
much more difficult to steer, due to the longer chain of processes linking the oxidation of sulfur 
dioxide to the eventual formation of sulfate particles.  
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3.3.2 Ozone effects of the injection of sulfur  
Numerical simulations of the effect of sulfur injections on stratospheric ozone within IMPLICC 
(with the EMAC model operated at MPI-C) have confirmed earlier studies. In particular, in the 
context of the polar winter and the linked formation of a polar vortex, ozone over both poles, 
especially the Antarctic, tends to be further depleted through the additional aerosols and the related 
formation of reactive chlorine species. On the other hand, the ozone column outside the polar areas 
tends to be reinforced as a consequence of the aerosol serving as an additional sink of ozone 
degrading nitrate. These effects are, however, relatively small, being on the order of about 5-10% for 
an injection of 2 Mt(S)/y (an amount that could approximately balance the increase in GHG forcing 
between the years 2020 and 2035 in the moderate emission scenario RCP4.5). Nevertheless the 
impact on ozone is perhaps still large enough to be of concern, especially over populated regions 
near the poles. 

Figure 4: Shortwave zenithal albedo of the geoengineered stratospheric aerosol layer obtained with the 
methods of SO2 release (left) and H2SO4 release (right). The height of injection is 25 km in a 
circumequatorial band, reaching from 10°S to 10°N. The mass injected per year is equivalent to 2 Mt S. 
Mass injection was started on Oct 1 2000. Results averaged for Jan 2004. 
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3.3.3 Climate effects of the injection of sulfur  

Potential climate effects of sulfur injections have been studied by comparing results from the three 
IMPLICC ESMs for the G3 scenario described in Section 3.1. Figure 5 shows time-series of annually 
averaged data of all simulations. With the MPI-ESM, a small ensemble of three simulations was 
performed, while the other two ESMs have performed single simulations. Results of MPI-ESM show 
only very slightly increasing near surface temperature. Nor-ESM shows a steady increase in 
temperature, as the amount of emitted sulphur was apparently too low to prevent the temperature 
form continuing to rise (but seems to have a strong impact on the precipitation), while IPSL-ESM 
shows increasing temperature until about 2050 and then a levelling-off or even slight decrease. As 
expected from the design of the numerical experiments, in all models, the temperature increase from 
2020 to 2070 is small in comparison to the increase of about 0.7 to 1.2°C simulated under the 
emission scenario RCP4.5 without SRM.  

Global mean precipitation under G3 is in the MPI-ESM and IPSL-CM5A slightly and in the 
NorESM strongly reduced in 2070 compared to 2020. This can also be seen in the hydrological 
sensitivity, expressed as annual mean precipitation change over temperature change relative to 
CLIM2020 in the bottom panel of Fig. 5. Under non-CE climate change conditions, this sensitivity is 
of about 2% precipitation increase per Kelvin temperature increase (Held and Soden, 2006), but 
according to our results much smaller or even negative under CE. Concerning the regional patterns 
of precipitation response the three ESMs do not agree well, however changes are in general small. 
This is not unexpected, as under this scenario only a moderate additional climate forcing is balanced 
by SRM. Balancing a larger forcing may lead to much stronger climate responses as discussed in 

 

Figure 5: Time series of globally and annually averaged data of three different ESMs (IPSL-ESM (black), 
Nor-ESM (blue), MPI-ESM (red))  for temperature near surface (top, left), precipitation (top, right) and 
hydrological sensitivity compared to climate averaged around year 2020 (bottom). The dotted lines are 
results of the RCP4.5 simulations. 
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Section 3.2. The IMPLICC simulations confirm, however, the risk of very rapid climate change if 
SRM is terminated abruptly. Stopping SRM measures in 2070, as done under this scenario would 
bring back the global mean temperature close to the scenario without SRM in less than ten years. 

The climate effects of sulfur injections in comparison to those of other SRM methods will be 
discussed in Section 3.5. 

 

3.4 Implications of CE through the manipulation of marine clouds 
It has been known for more than 30 years that the strong cooling effect of marine stratiform clouds 
depends on the size of the cloud droplets. If a given amount of water is distributed on many small 
droplets the reflection of solar irradiance is stronger than if the same amount is distributed on few 
large droplets. It has been suggested that the injection of additional sea salt aerosols into regions with 
low-level clouds would enhance the number of cloud condensation nuclei. Water vapor can condense 
onto these and lead to the formation of more and smaller cloud droplets and, hence, brighter clouds 
that cool the climate. Contrary to the methods of SRM discussed above, radiative effects of this 
method would be much more regional and hence the potential climate effects can be expected to be 
different. Besides this, open questions remain concerning the effectiveness of the method.  

3.4.1 Microphysical implications of sea salt emissions  
Within IMPLICC, Alterskjær et al. (2012) used satellite observations and the NorESM to investigate 
which regions over the ocean are the most sensitive to deliberate increases in cloud droplet number 
concentration. They found high sensitivities in the tropical region between about 30oN and 30oS, in 
particular off the west coasts of the continents (Fig. 6). This agrees with earlier studies. But they also 
found that the effectiveness of cloud seeding maybe smaller than expected from simple estimates 
because it can be inhibited by different processes. This includes the condensation of gaseous sulfuric 
acid on the injected particles, which reduces the formation of cloud condensation nuclei by sulfuric 

                   

Figure 6: Total susceptibility function from a 5-year simulation with the NorESM model. The larger the 
value of this function is, the better suited is the respective area for climate engineering through sea salt 
emissions. 
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acid itself. Likewise, if the injected sea salt mass is very large, the effectiveness is reduced because 
of a suppressed supersaturation due to excessive competition for the available vapor. 

Other important new results of numerical studies performed at UiO show that injected sea salt may 
also have a strong direct radiative effect in regions where it does not immediately serve as 
condensation nuclei. This effect is, however, quantitatively different among numerical models and 
needs to be studied further. An additional important result is that the effect of sea salt emissions on 
clouds crucially depends on the size of the emitted particles (Alterskjær and Kristjánsson, 2012). If 
particles of a larger or smaller than optimal size are emitted, the effectiveness of this SRM method 
could be strongly reduced or even inverted, i.e. leading to an increase in surface temperatures as 
opposed to the desired cooling.  

 

3.4.2 Climate effects of the manipulation of marine clouds  
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Figure 7: Evolution of the globally averaged near-surface temperature in simulations with the MPI and 
NorESM models. The black (MPI) and red (NorESM) curves represent the RCP4.5 scenario runs, while the 
three blue curves (MPI) and the three green curves (NorESM) are the simulations with marine cloud 
brightening applied from 2020 to 2069. In NorESM the simulations were continued for another 20 years 
(through 2089) after geoengineering was switched off, while the MPI runs terminate at 2069. 
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Global mean temperature effects of this marine cloud brightening are similar to those of sulfur 
injections. With the right amount of emissions in the models, the temperature increase after 2020 can 
be slowed down considerably (Fig. 7), but after a potential termination in 2070 the climate change is 
very rapid, i.e. the engineering is almost forgotten within about 10 years. As the “amount” of SRM in 
this numerical experiment is small compared to the idealized G1 experiment of section 3, the effect 
on precipitation is relatively small. The two models having performed the marine cloud experiment 
so far (NorESM and MPI-ESM) show, however, similar patterns of precipitation response to the 
idealized experiment, with reductions in middle to high latitudes, in particular over the North-
American continent (Fig. 8). 

3.5 Comparing climate effects of different SRM meth ods 
In order to understand differences in the climates produced by different CE methods, we have 
simulated a scenario of the G3-type, i.e. ramped-up climate engineering from 2020 to 2070, for 
different methods. Besides the sulfur injection and cloud brightening approaches discussed in 
sections 4 and 5, the MPI-ESM was used to perform two further numerical experiments: one for a 
simple reduction of solar irradiance, as might be realized by space mirrors, and one with greenhouse 
gas concentrations fixed at 2020 levels, which can be interpreted as a massive mitigation or carbon 
dioxide removal scenario. Fig. 9 (left panel) shows a similar small temperature increase for all four 
approaches which is due to the inertia of the climate system. In the case of cloud brightening, the 
temperature in 2070 is almost 0.2oC lower than for the other methods, indicating probably an 
overestimation of the amount of sea salt emissions needed to reach a certain cooling. The right-hand 
panel of Fig. 9 shows that global mean precipitation responds differently in the four scenarios. A 
fixing of GHG concentrations leads to a further increase of precipitation due to the increasing global 
mean temperatures. The three solar radiation management scenarios show, however, almost no 
change for the space-mirror case, and decreasing precipitation for the two other techniques. This is at 
least partly related to both sea salt and stratospheric sulfate aerosols not only reflecting solar 
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Figure 8: Simulated difference in precipitation at years 2060-2069 between the G5 simulation and the 
RCP4.5 simulation. The figure shows the average result for both the MPI-ESM and NorESM models. 
Hatching indicates regions where all the five simulations (three realizations with MPI-ESM, two with 
NorESM) agree on the sign of the difference. 
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Figure 9: Time evolution of global mean temperature (oC, left) and precipitation (mm/day, right) 
simulated with the MPI-ESM under four different scenarios of type G3, i.e. where it is attempted 
to keep the  climate forcing constant at 2020 levels through different methods. SALT: 
manipulation of marine clouds; FIX: GHG concentrations fixed at 2020 levels; SULF: injection of 
sulfur into the stratosphere, SOL: reduction of solar irradiance. All results are 5-year running 
means averaged over ensemble simulations with three members. The shading around the 
precipitation time series from FIX indicates maxima and minima of the ensemble members. 

irradiance but also having a greenhouse effect. Cloud effects and the lower temperatures in the case 
of 

cloud brightening may also contribute to the different evolutions of global mean precipitation. 
However, these results suggest that the strong precipitation effects caused by a pure reduction of 
solar irradiance in the massive SRM scenario G1 (Section 3.2) might be even stronger if one of the 
other two SRM techniques was employed. 

Regional climate responses can also be expected to differ between the different techniques, but to 
properly estimate such effects future multi-model analyses will be needed. 
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3.6 Economic Implications of CE 
The numerical economic general equilibrium model GRACE (operated by CICERO) was used to 
estimate economic implications of the IMPLICC climate engineering scenarios. The model is a 
global computable general equilibrium model, which uses the GTAP version 7 social accounting 
matrices (Badri and Walmsley, 2008). It is built up with CES aggregates in both production and 
consumption, and trade between regions is represented by Armington functions (Aaheim and Rive, 
2007). Investments, population and technological developments are exogenous, while impacts of 
climate change are attached to the relevant factor of production in each case (Aaheim and Schjolden, 
2004). For example, impacts to the productivity of land in agriculture are expressed as a reduction in 
the availability of natural resources in the sector. One sector may thereby be affected by more than 
one impact, such as productivity of land, extreme events, which affects the capital stock (and 
possibly land) and health effects, which affect labour supply. Climate change thereby gives rise to 
factor substitution as well as sector substitution, which is interpreted as autonomous adaptation. The 
model divides the world into 11 regions and 15 economic sectors, shown in Table 3. 

The studied scenarios are the high-emission scenario RCP8.5, the moderate emission scenario 
RCP4.5 which is realized in GRACE by invoking charges on CO2-emissions, and the SRM scenarios 
G3 using sulfur emissions (as discussed in Sections 3.3) to further limit the climate change 
experienced under RCP4.5. Climate change information as calculated by the IMPLICC-ESMs was 
used in the economic model. 

 

 

Table 3: Economic sectors and regions in GRACE. 

Sectors 
Regions 
Name Abbr. Comprises 

Agriculture 
Forestry 
Fisheries 
Crude oil 
Coal  
Refined oil 
Electricity 
Gas 
Iron and steel 
Non-metallic minerals 
Other manufacturing 
Air transport 
Sea transport 
Other transport 
Services 

Western Europe WEU EU15, Nordic, Iberia and Greece  

Central and Eastern 
Europe 

CEE 
Sovereign countries of the former 
Warsaw pact plus Baltic states and 
former Jugoslavia 

Former Soviet Union FSU Other former Soviet states 

Mdl East & North 
Africa 

MSA 
Mediterranian Africa, and countries in 
the triangle Turkey – Saudi Aarabia – 
Iran 

Sub-Saharan Africa AFR States in Sahara and southern Africa  

South Asia SAS 
Afghanistan, Pakistan, India, Nepal, 
Bangladesh, Nepal, Maldives, Bhutan 

East Asia EAS China, Mongolia, North Korea 
Other Pacific Asia PAS Asian peninsula and island states 

Pacific OECD PAO Japan, South Korea, Australia, New 
Zealand 

North America NAM USA and Canada 
Latin America LAM Carribbean, Mexico and further south 
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It should be noted that the limitations of analyzing the costs and benefits of climate engineering by 
general equilibrium models based on climate projections are many. In particular, most of the 
numerical estimates are highly uncertain. This includes the climate projections, the economic data 
and the linkages between climate indicators and economic activities, which we must partly consider 
unknown. Another important criticism is that possible side-effects of solar radiation management 
other than on monthly mean temperature and precipitation have been ignored in this study, as for 
example potential changes in the magnitude and frequency of extreme events. The main reason is 
that side-effects and their social and economic consequences are poorly understood, and there are 
few, if any, studies to base estimates on. On the other hand, this study addresses a few issues that 
previous studies have left out. While impacts are usually explained solely by the change in mean 
temperature, they are related also to changes in precipitation here. Impacts are moreover weighted 

                    

                    

Figure 10: Impact on world’s GDP of SO2 injection relative to GDP in RCP4.5 based on climate change 
calculated in the RCP4.5 and G3 scenarios with the MPI-ESM. Top: global average; bottom: averages for 
different regions as defined in Table 3. 
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depending on where the activities take place: over arable and forested land in agriculture and 
forestry, respectively. Other impacts are weighted according to population density. As a 
consequence, changes in coastal areas tend to have a greater impact than changes elsewhere. 

On this background, we draw the following conclusions: 

1) In combination with strong efforts to reduce emissions of greenhouse gases (as assumed in 
the RCP4.5 scenario), the benefits of further reducing radiative forcing by solar radiation 
management are negative in the G3 scenario (Fig. 10, top). This is partly because SRM changes 
precipitation patterns with negative economic impacts, and partly because there are benefits of a 
small warming effect in some regions. Possible negative side-effects of geoengineering will add to 
the costs of these technologies. 

2) The responses differ among regions (Fig. 10, bottom). While GRACE calculates that SRM 
under the G3 scenario causes a GDP reduction in East Asia by 1.2 percent in 2070 in comparison to 
RCP4.5, Latin America and Africa benefit up to 0.4 percent in the same year.  

3) Even though the expected impacts of SRM may become negative when compared to the 
RCP4.5 scenario, geoengineering may turn into an option with positive benefits if the impacts of 
global warming at moderate levels suffice to reach tipping points for natural processes and 
ecosystems, which are not considered in this study 

4) If solar radiation management is imposed in a future with higher emissions, the potential for 
benefits may become large. In the RCP8.5 scenario, which causes a warming of 5 to 6°C in 
populated areas in 2100, negative impacts of climate change lead to reductions between 1.5 and 9 
percent in GDP, depending on region. However, at such a level of warming, the impacts of both 
climatic changes and of a resulting attempt to mitigate warming by solar radiation management must 
be considered unknown. 

 

3.7 Summary and conclusions 
Within the IMPLICC project, five partner institutes from France, Germany and Norway have studied 
the effectiveness, side effects, risks and economic implications of climate engineering through 
different solar radiation management techniques suggested to limit climate change. The main tools 
used in these studies were state-of-the-art numerical Earth system models (in some cases augmented 
by specific treatments of atmospheric aerosols and chemistry) and an economic model. One central 
question was what climate would result from the application of three different CE techniques: the 
reduction of solar irradiance (through space mirrors); the enhancement of the reflection of solar 
radiation through stratospheric sulfate aerosols; and the manipulation of marine clouds through 
injection of sea salt. One novel aspect of IMPLICC in the context of climate engineering research 
was the implementation of a model intercomparison study in order to identify robust climate 
response patterns. 

In an idealized experiment with large greenhouse gas forcing balanced globally by the reduction of 
solar irradiance it was shown that it may be possible to compensate the increase of global mean 
temperature. However, the increase in global total precipitation that is expected in scenarios with 
enhanced greenhouse gas concentrations would be overcompensated by solar radiation management: 
a geoengineered climate would have less precipitation than a natural climate of the same global mean 
temperature. The model intercomparison showed that precipitation decreases – under the chosen 
scenarios - would particularly affect large land masses in the mid-latitudes of the Northern 
hemisphere, i.e. Canada and the US, central and northern Europe and Asia. 
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The simulation of a scenario with a much smaller degree of geoengineering, where just the increase 
of climate forcing through a moderate greenhouse gas emission scenario after the year 2020 would 
be compensated, showed, not surprisingly, a much smaller climate impact. Because of the weakness 
of the forcing, the regional patterns of the simulated responses are also less robust than under strong 
forcing. It was, however, clearly shown that an abrupt termination of climate engineering efforts 
would lead to very rapid climate change. 

The estimation of economic implications of climate change and climate engineering on long time-
scales has obvious limitations. However, our simulations suggest that climate engineering under a 
moderate emission scenario may not be economically advantageous. This could be different under 
high-emission scenarios, but also it is then unclear if the economic importance of side-effects would 
become significant. 

IMPLICC has also made progress on microphysical processes involved in the aerosol-based radiation 
management methods, which help determine their effectiveness. It has become clear that the 
effectiveness of the methods depends strongly on the implementation, e.g. on the size of emitted sea 
salt particles. However, uncertainties concerning the amount of aerosol necessary to reach a certain 
climate effect remain. 

It has become clear during the course of the project that some of the remaining uncertainties 
concerning implications of climate engineering are caused by limited understanding of climate 
processes in general, which are not necessarily specific to climate engineering. The manipulation of 
marine clouds, for example, is based on aerosol-cloud interaction processes which are one of the big 
open questions of climate research, independent of the origin of aerosols. Injecting sulfur into the 
stratosphere would not only have radiative but also dynamical effects. Dynamical stratosphere-
troposphere coupling would need to be better understood in order to fully appreciate the effects of 
such climate engineering. 
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4. Potential impact (including the socio-economic impact and the wider 
societal implications of the project so far) and the main dissemination 
activities and exploitation of results 

 
The goal of IMPLICC was not to develop new approaches or technologies, but rather to increase the 
level of knowledge about the feasibility and implications of existing suggestions to engineer the 
climate through solar radiation management (SRM). A better understanding of effectiveness and 
potential side effects (as on the hydrological cycle, see above) of suggested SRM methods is crucial 
in order to allow for an information-based decision making.  

In this respect we were in particular interested in the question what climate would result from SRM. 
Given that climate model results are uncertain due to the imperfectness of the models and different 
choices of e.g. parameterizations or numerical approaches may lead to different results, it was a key 
element to perform a standardized set of numerical SRM scenarios with different stat-of-the-art 
climate models. IMPLICC not only gathered three European models for this purpose but was, 
beyond the original proposal, also instrumental in setting up a larger international effort (GeoMIP, 
Kravitz et al., 2011, http://climate.envsci.rutgers.edu/GeoMIP/index.html) that is ongoing. Some of 
the proposed numerical experiments have now been performed by more than ten climate models 
from centers in Europe, North America and Asia and are currently being analyzed. 

A key result of IMPLICC (Schmidt et al., 2012) obtained through a comparison of results from four 
models is improved knowledge on the response of the hydrological cycle to SRM. It was already 
known that likely SRM would over-compensate the global mean precipitation increase from 
increased greenhouse gases, i.e. a geoengineered climate would have less precipitation than a natural 
climate of the same global mean temperature. It is concluded in this paper that the potentially strong 
climate responses of SRM suggest that climate engineering cannot be seen as a substitute for a policy 
pathway of mitigating climate change through the reduction of greenhouse gas emissions. 

In particular this publication had a strong media echo, partly triggered by the decision of the 
European Geosciences Union to accompany the publication by a press release 
(http://www.egu.eu/news/4/geoengineering-could-disrupt-rainfall patterns/). Results of the study 
have been reported by likely more than 30 print and online media and in radio interviews in several 
European countries. Total media coverage of IMPLICC results is significantly higher. Additionally, 
many members of the IMPLICC consortium have interacted with the public in particular in the form 
of public lectures (for instance at schools) or in public panel discussions. Results of IMPLICC have 
contributed significantly to the compilation of a brochure on climate engineering by the Max Planck 
Society that is distributed to schools for the use in classes (http://www.max-
wissen.de/Fachwissen/show/0/Heft/Geo-Engineering.html). Finally, deliverable 6.3, the “Synthesis 
report for policy makers and the interested public” is trying to inform the public about the outcome 
of the project. This deliverable is available via the project website http://implicc.zmaw.de). 

The dissemination of IMPLICC results in the scientific community is ongoing. However, already 
four peer-reviewed publications of IMPLICC results have appeared, and results have been presented 
in numerous presentations (often invited) on scientific meetings and congresses and at scientific 
institutes, world-wide.  To our knowledge, results obtained within IMPLICC will also be covered in 
the fifth assessment report (AR5) of the IPCC that will be published in 2013. 
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5. Project website and other contact details 
 

Important information on the IMPLICC project has been posted on the project’s public website 
http://implicc.zmaw.de. In particular the list of publications resulting from the work within the 
project will also be updated in the future. 

For specific information on the work within the project and related activities we further recommend 
to contact the coordinator of the project or the work package leaders: 

Hauke Schmidt (coordinator) 
Max Planck Institute for Meteorology, Hamburg, Germany 
e-mail: hauke.schmidt@zmaw.de 
 
Michael Schulz (WP2: basic scenarios) 
Laboratoire des Sciences du Climat et l'Environnement, CEA/CNRS 
now at: Norwegian Meteorological Institute, Oslo, Norway 
e-mail: michael.schulz@met.no 
 
Mark Lawrence (WP3: sulfate aerosols) 
Max Planck Institute for Chemistry, Mainz, Germany 
now at: Institute for Advanced Sustainability Studies, Potsdam, Germany 
e-mail: Mark.Lawrence@iass-potsdam.de 
 
Jon Egill Kristjansson (WP4: marine cloud brightening) 
University of Oslo, Oslo, Norway 
e-mail: j.e.kristjansson@geo.uio.no 
 
Asbjorn Aaheim (WP5: economic implications) 
CICERO (Center for International Climate and Environmental Research), Oslo, Norway 
e-mail: h.a.aaheim@cicero.uio.no 
 
Claudia Timmreck (WP6: dissemination) 
Max Planck Institute for Meteorology, Hamburg, Germany 
e-mail: claudia.timmreck@zmaw.de 
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