EXTREME ARCTIC MARINE WEATHER ERIK KOLSTAD BLUE ACTION KICKOFF

The sea ice edge is a region with large temperature gradients

Warmer ocean

One of the main reasons are the large vertical temperature differences between the ocean and the atmosphere

This phenomenon has been known for a long time, along with typical tracks

This phenomenon has been known for a long time, along with typical tracks

We cannot forecast individual polar lows more than a couple of days in advance

But maybe we can forecast the environment in which they form?

Quarterly Journal of the Royal Meteorological Society

Q. J. R. Meteorol. Soc. 137: 1749-1761, October 2011 A

A global climatology of favourable conditions for polar lows

Erik W. Kolstad*

Bjerknes Centre for Climate Research, Bergen, Norway

*Correspondence to: E. W. Kolstad, StormGeo, Nordre Nøstekaien 1, 5011 Bergen, Norway. E-mail: erik.kolstad@stormgeo.com

Two of the environment variables that are most favourable for polar low formation are:

1. Marine cold air outbreaks (warm ocean, cold air) 2. Tropopause height (i.e. PV anomalies) Quarterly Journal of the Royal Meteorological Society

Q. J. R. Meteorol. Soc. 137: 1749-1761, October 2011 A

A global climatology of favourable conditions for polar lows

Erik W. Kolstad* Bjerknes Centre for Climate Research, Bergen, Norway *Correspondence to: E. W. Kolstad, StormGeo, Nordre Nøstekaien 1, 5011 Bergen, Norway. E-mail: erik.kolstad@stormgeo.com

63 polar lows according to a database compiled by the Norwegian met office in Tromsø

Approximate sea ice edge

at tropopause

Pressure

Values for the 63 polar lows

MCAO index = SST-T700

Work plan

Test dynamical models to see if marine cold air outbreaks can be forecast, and on what time scales (10–100 days)

Combine dynamical forecasts with empirical forecasts of northward-propagating SST anomalies and sea ice extent

With DNV GL, integrate these forecasts into a tool for risk management in the Arctic (WP5)

Thank you!

erik.kolstad@uni.no

