


Part 1. Introduction




0Transport | Transformation| ¥ Removal |

—.——|-.

——— \ 11|L le Hlt M"

. & Chemical Transformations

Prevailin - |
® " Winds = — Rl TSRS S

oud Processe: : Dispersion

e

.

\\\\\\\\\“~ R R - :
.vmca AR R BN
A Industry MixXing Ay S Sy A
- WL L W D -
g _¥ wetDapusition. Deposition @ Visibility

ltural
Resources

ricultural
roducts




v
o
=
S

o
v
V

—
S

E

O

o

<C

')

O

-

o

REGIONAL:

acid rain,
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greenhouse gases
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health effects

air pollution




Atmospheric Boundary Layer Structure

Atmospheric boundary layers are usually classified into three types: neutral, convective and
stable, based on atmospheric stability (buoyancy effects) and production of turbulence by

wind shear.

Turbulence in the stable boundary layer (SBL) is generated by shear and destroyed by
negative buoyancy and viscosity. The strength of turbulence in the SBL is much weaker and it
is much shallower in comparison to the neutral and convective boundary layers.
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A typical daily cycle of the atmospheric boundary layer in fair weather (after Stull, 1988).




The Convective Boundary Layer
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Primary & secondary pollutants

.
g U'''w
] It w w

Primary: Emitted directly to the atmosphere .
Secondary: Forms in the atmosphere  ©200%Jone and Bardert Pblishes, LLC (e jbpub.com)
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Part 2. Fundamental Equations




Variables and Equations in an Atmospheric
(Physical) Mode

e Variables:

* Pressure p Jo,
* Density

* Temperature T
 Wind components (u, v, w)

* Equations:
* Momentum equation (3 components)
* Thermodynamic equation
* Continuity equation
e Equation of state (perfect gas)



Fundamental Equations

* Momentum equations on a rotating sphere: Express the wind
acceleration in response to different forces: gravity, gradient force,
Coriolis force, dissipation

 Thermodynamic equation: Expresses the conservation of energy;
importance of diabatic heating by absorption and emissions of
radiative energy (solar and terrestrial), and of adiabatic processes
(e.g., compression of air)

e Continuity equation: Expresses the conservation of mass



Chemical Composition of the Atmosphere

Concentration of atmospheric trace gas i:

dp, _(5/)1-) +(5pij ,((Mj +(5pij
dt at emission at deposition I at transport at chemistry




Continuity Equation for a Chemical Species

(Flux);,=[p v] (x) o (Flux) o= [p V1 (x + dx)

— —

dp . (Flux) i —(Fluxgy ) d(pv)
— = +5=— +
ot Ax 0x

S




Continuity Equation for a Chemical Species

op
T AV-(pV)=
p (pv)=S

where

0 1s the mass density of the chemical species

v 1s the wind velocity vector

S 1s the local chemical source of the chemical species



Continuity equation for
Chemical Species

Mathematically describes the
dynamical and chemical
processes that determine the
distribution of chemical species

flux form /-

é)p"+V~(piv)=Si

71
advective form: \_
F S,

~~+vVv-Vf =—
P /

a

where,
o, Is the mass (or number) density of species i
p. is the air mass (or number) density

f. = Pi is the mass (or volume) mixing ratio
P,

S. is the production and loss rate of species i
v is the wind velocity vector




Part 3. Types of Chemical- Transport Models




Types of models

understand the principles of feedback cycles

development of parameterisations

transport studies

zonal mean state of the atmosphere (often in the stratosphere)

detailed description of several processes in time and space



Part 4. Numerical Solutions




Solving the continuity equation for N chemical species

* N species leads to N coupled non-linear equations which rarely
have an analytic solution.

e System is solved with numerical methods at discrete locations
(“grid-points”)

* Differentials replaced by finite differences

* Finite resolution (time or space) implies some transport processes
are unresolved (e.g. diffusion)

* Chemistry and transport handled as separate operations






Finite Difference Methods

* In these methods, the space (or time) derivatives are replaced by finite
difference approximations, and the solutions are produced at specified
points in time and space.

* For example, df/dx is approximated at location x by

[f(x + Ax) — f(t — Ax)]/ 2 Ax

with a truncation error of O(Ax?), if Ax is the grid space
* Different algorithms exist to solve the differential equation

* df/dx = F [f(x), x].

* Explicit methods (F is evaluated at time t) require very small grid space Ax to
provide stable and accurate solutions;

* Implicit methods (F is evaluated at time x + Ax) are more difficult to solve,
but the solution is unconditionally stable.



Model Resolution
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Part 3. Numerical Solutions

* 1. Transport
e 2. Chemistry
e 3. Surface Processes




The treatment of Advection

op =, -
£ =_V.
= V-(pV)



The simple one-dimensional case
The analytic (exact solution) for a constant wind speed u is known!

ap(x,t)_ dp(x,t)u
ot 0x

The 1nitial function at # =t 1s py(x)

The function at time #1s p(x,t) = py(x-ut)

p(x,7) 1




Numerical Approximation of the Advection Equation

Desired properties of an advection scheme
® accuracy
e stability
® mass conservation
e monotonicity (shape preservation)
e positive definite fields
e |ocal
e efficient

Three groups of algorithms:
eEulerian
e agrangian
eSemi-Lagrangian



Euler versus Lagrange
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Two different

representations x, -Ax
of advection
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An Eulerian View

Mass Balance on Several Fixed Atmospheric Boxes

Current Models:
Up to ~ 106 grid boxes

7
A Mass balance
(C) Longitude —,/ ; 1 1
” e ) equation is
. solved for
box (0-D) % >
3 < each box of
2-D T
T he grid.
[T 7T T the grid
/S /S S/ , T
(d)
//
(b) /
4 ?
column (1-D) 3-D

—>For a global model:
Horizontal Résolution: 50-300 km
Vertical Résolution : ~¥0.1 -1 km



Elementary Numerical Methods

Let’s assume the one dimensional advection equation with constant flow velocity c: It is a

partial differential equation. + a =0
X
Forward-in-time Centered-in-time Backward-in-time
un—l—l " un—%—l_u;}—l n+1 n
Forward- i i L “z ”z
2At
] “?H—“zn - o, ”?fll “?H
in-space co= = () ¢ — 1) £ =0
u{H—l_un un+1_un—1 un—f—l_un
= i i i i i ]
Centered s 5k | o
: ul!  —u ult . —u® gl k]
= s i s | i g i+1 j=q= = i1 =
in-space x5 0 - =10 e —
uttl_yn uhttl_n-1 uttl_yn
= i i i i i i
Backward A AT 1B 7
. el e e ul
in-space v e e = —



Elementary Numerical Ivlethods

Let’s assume an partial differential equation. + =0
6t 6x
Forward-in-time Centered-in-time Backward-in-time
un—t—l u:,l u(H—l_un—l un+1 uh
- 1 1
Forward - i
. ”?+1'“zn Uit —U; ”?H*”Hl
- el - i .
in-space Ceie 0 ¢ 0 G — |
u?+1_u? u?+1_u(1 1 un+1 u"
Centered T e Lt
A u1+1_uz leie uzr'l—}—l_u?——l o ufl_:'ll—u’?j‘ll i
in-space Ce— =0 e =0 =t =
u”“ ul” Vs utt—yr
- 1 1
Backward — T
: u?—uf_l - woeus it gyt
in-space C——A"r = C—“—Ax— = Cc - Axl —




Forward-in-time-backward-in-space: the upwind scheme

cAt
1 e (u? —ulq).
Ax
i 1s the index for space (x), 7 1s the index for time (t) 500 steps:
o . c=15msA; x=1Rmand t=3(
For ¢ > 0, this 1s the upwind scheme. 12 . , . , l
1.0- & =afinitial
At each time step, the values on the right side of the | =~ Analytic
equation are known and the value if u at time n+1 o6 1 UTErIcE
can be found. = ol
0.2f
As shown by the graph, the numerical solution is 0.0
different from the analytic solution. The solution1s _, 5|

0 00" 200: = 300 « 400 5(I)O 600

diffusive, but it 1s positive.
z (km)



Stability of the methods

Table 4.3: Stability criteria for forward-in-time, forward-in-space and for forward-
in-time, backward-in-space schemes.

The Courant-

Forward-in-time, up T —uf 210 stable if FI’ICdI'lChS-. :
Backward-in-space unA_tunl upwind ‘ oAt/ Axl < 1 ‘ Lewy stablhty
C 1 lis — e o
ez condition or
g0 always unstable o
downwind CFL condition
Forward-in-time, it —y? < stable if
Forward-in-space s upwind loE x| <1
G e =0
¢ always unstable
downwind




Elementary Numerical Ivlethods

Let’s assume an partial differential equation. + =0
6t 6x
Forward-in-time Centered-in-time Backward-in-time
un—t—l u:,l u(H—l_un—l un+1 uh
- 1 1
Forward - i
. ”?+1'“zn Uit —U; ”?H*”Hl
- el - i .
in-space Ceie 0 ¢ 0 G — |
u?+1_u? u?+1_u(1 1 un+1 u"
Centered T e Lt
A u1+1_uz leie uzr'l—}—l_u?——l o ufl_:'ll—u’?j‘ll i
in-space Ce— =0 e =0 =t =
u”“ ul” Vs utt—yr
- 1 1
Backward — T
: u?—uf_l - woeus it gyt
in-space C——A"r = C—“—Ax— = Cc - Axl —



Elementary Numerical Ivlethods

Let’s assume an partial differential equation. + =0
6t 6x
Forward-in-time Centered-in-time Backward-in-time
un—t—l u:,l u(H—l_un—l un+1 uh
- 1 1
Forward - i
. ”?+1'“zn Uit —U; ”?H*”Hl
- el - i .
in-space Ceie 0 ¢ 0 G — |
u?+1_u? u?+1_u(1 1 un+1 u"
Centered T e Lt
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in-space Ce— =0 e =0 =t =
u”“ ul” Vs utt—yr
- 1 1
Backward — T
: u?—uf_l - woeus it gyt
in-space C——A"r = C—“—Ax— = Cc - Axl —



Center-in-space, center-in-time: i \ e \
The leapfrog method pre i Lk |
0.5 f
S I
1 ~1 '
MZ-H_ _ u? + Cu?Jrl _ u?_l =0 0 O—A-MWWM\MW“I &‘—
2At 2Ax ' '
TG g0 200 300 400 500 600
A z (km)
+1 _ n-1_ ¢
up =y — Ax (i1 —uiq) -
1 0 ‘ Initial ’
. . 0.8 = Numerical | i ﬂ
Amplification factor = 1 A
Has a computational mode in addition to a physical mode = 0: A i
Computational mode need to be filtered. b K
0.0 L J
0.2

Figure: after 500 steps, ¢ =15 m s!, Ax =1 km P e 3 (3,8&) B R il

and At=30s



Filtering the Leapfrog e i
S O u t I O n 3 82 il i——" “‘Numerical .
" i@ l -
0.2 ~=0.05 A

OO 40“: ~ANWA A

i 07 oo 2ou 200k 00 500k a0
n+1 n—1 c/\t " - z (km)
u. —= U. - T (ul‘*—l_ul"“l). T T T T T
1 l

Ax 1.0/ [ . e
0.8} Analytical : |
3 82 il Numerical 7l
02k = 0120 e

0.0 - L

1 _ ~0% 100 200 300 400 500 600
ﬁ?:u?+v(”+ —2ul + u! ). z (km)

%g: — = Analytical : " ’
. . . 3 0.6 — Numerical il
The Asselin Roberts filter with an adjustable ol b o
L e . | —

filter factor “gamma” 0 ex

0" 100 200, 560" 400" SO0 600
z (km)



Solving the Eulerian Advection Equation

aCi _
Ot

—U

oC.
OX

- Equation is conservative: need to avoid diffusion or
dispersion of features. Also need mass conservation,

stability, positivity...

* All schemes involve finite difference approximation of
derivatives : order of approximation — accuracy of solution

- Classic schemes: leapfrog, Lax-Wendroff, Crank-

Nicholson, upwind, moments...

- Stability requires Courant number uAt/Ax < 1

... limits size of time step

s AAAvAcaIinAa AthAr radTireara~arnte 7A A

mnAactEnnaafv intradriAAA~

CONCENTRATION

08

L (a)

. Leapfrog

- 2nd order space

. @ =05, 100 steps
A

L L]
Analytical |
© = = — Numerical |

L Lax-Wendroff
- 2nd order space
- =05, 100 steps

. L 1 1 1 1 i — |

1 | | 1
[ (©) _

T

-
-
-
N -——
-
- .

- - ~

apn —
-

| Upwind

o= 0.5. 100 steps

1 1
5 10 15 20 25 a0
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A Lagrangian View

Following a Single Air Parcel

dX/dt = v(X?) transport A'.
<

- Cxx, ) 4 _p.p_1_p
CxlXor 1) «

Following an Air Parcel in a Plume

WIND dilution

dilution o
_> CX, b
N -
{

o
1, A 1,+2At

dC
X _ 7 _D_ _
T E T P L D kdilution (CX CX ,b)
© D. Jacob, Introduction to Atmospheric Chemistry, dt
Princeton University Press



A Lagrangian View

Following a Large Number of Air Parcels

Concentration field at time t, defined by n particles

PROS over Eulerian models:
C(X, t0+At) - - * no Courant number restrictions
Trajectories . 1o numerical diffusion/dispersion
fj“””g time easily track air parcel histories
interval At . jnyertible with respect to time

CONS:

* need very large # points for statistics

« inhomogeneous representation of
domain

« convection is poorly represented

* nonlinear chemistry is problematic

© D. Jacob, Introduction to Atmospheric Chemistry,
Princeton University Press



There is no single advection scheme that is universally best.

* Eulerian Methods are limited by the CFL Condition that constraints the
choice of the time.

* Low-order algorithms such as the upstream method preserve the sign of the
solution, but are excessively diffusive.

* Higher-order algorithms are generally not monotonic and occasionally produce
undesired negative values.

* Lagrangian methods are popular for source-oriented and receptor-oriented
transport problems in which one is concerned with transport from a point
source or transport contributing to concentrations at a receptor point.

* However, they do not provide the re%ular full-domain solution achievable by
Eulerian methods and cannot properly represent nonlinear chemistry or
aerosol microphysics.



Grid-point models

Problem at the poles !



Advection

*Desired properties of an advection scheme:

* accuracy

« stability

* mass conservation

* monotonicity (shape preservation)
* positive definite fields

* local

« efficient

*Reviews of transport algorithms are given by Oran and
Boris (1987), Rood (1987), etc.

*Three groups of algorithms:

ol A v~



Assume a property (such as the concentration) than is transported
In direction x with a constant velocity c

example : one - dimensional advection equation

oy  OF _0
a o
flux F =cy
solved e.g. by the 'leap - frog' method:
At
M=y ——|F" —F"
Wj %7 AX J+ J—l]

Stable if Courant - Friedricks - Lewy (CFL)
condition is satisfied:

C|At

A -

<1




Courant-Friedrichs-Lewy (CFL) condition:

‘C‘At .
—— < Const, with Const ~ 1
Ax

The time step must be small enough, so that an air parcel

does not pass through more than 1 grid box during one
time step.

This is a major restriction for many global models beacuse
near the pole, the CFL condition is often violated unless
very small timesteps are adopted. Eulerian methods are
routinely used in regional models.

Solution: Modified grids towards high latitudes or other



Advection |: Eulerian Methods

e Other discretizations are possible:
* The Euler forward (explicit) scheme is unconditionally unstable
* The Upwind method is diffusive

* The Leapfrog method is not monotonic
* Improved methods: Smolarkiewicz, Bott, Prather.
* The CFL condition must be verified to ensure stability.

* Only nonlinear algorithms produce stable solutions, maintain steep
gradients, and preserve monotonicity.



Advection I: Eulerian Methods

The Prather Scheme

* In this method, the transported property (tracer mixing ratio) is

expressed in each grid

box by a quadratic function in the x, y, and z

directions (including cross terms). This function is decomposed into

orthogonal polynomia
order moments are ca

s over each grid box. Zeroth, first and second
culated over each box.

* Transport is performed

sequentially in the 3 directions x, y, and z.

* The first step is to decompose the moments for each gridbox between
the fraction for the gridbox that will be moved by advection into the
neighboring box, and the fraction that will remain in the original box.



Advection I: Eulerian Methods

The Prather Scheme

* In the second step, which represents the advection in 1 direction,
new moments are calculated in each grid box through the addition
of the moments calculated at the previous timestep in the two
adjacent sub-grid boxes that contribute to the tracer in a grid box

at the new timestep.

* Dividing of the moments in a given grid box in sub-moments, and
reforming the moments (by addition of sub-moments) after an
advection step, guarantees conservation of moments (i.e., mass)
during the advection process.



Advection II: Lagrangian Methods

* In Lagrangian schemes, distinct air parcels, in which tracers are assumed
to be homogeneously mixed, are followed as they are displaced by the
winds. In the absence of source/sinks processes, the tracer mixing ratio
remains constant in the air parcel.

e Lagrangian methods are relatively simple in concept and are not subject
to spurious diffusion. Errors can, however, accumulate over the
integration. Typically 100,000 parcels are used in a global transport
model. Parcels may “bunch up” in certain areas and leave others
without parcels to track. This problem is avoided in the Semi-
Lagrangian methods where at every new time step, one examines the

back trajectory of the parcel that arrives at a given grid point of the
model.



— —

In semi-Lagrangian transport

schemes, a backward trajectory is

computed for each corner point of a Arrival
grid cell. The new mixing ratio f of point A
species I is then computed by (x,1)
interpolation (,remapping”) of the
concentration field of timestep ¢,

onto the model grid at timestep t.

\.

(Xp,20)
Thus f,p (x,t) = fpp (X, ty) Departure
point DP

The location of the upstream departure
point is found by solving the equation dx/dt
= v (x, t). This equation has to be solved
iteratively since v varies with along the back



r\Aaveoeulivil 1il. JGelli II*I_OBI AUl I6IC|II Qi IJVUI v

t— At

X, =X+ L v(X,1)dt

(X) t) ‘

v

Accuracy depends greatly on
Interpolation scheme used.

W Common in modern GCMs

trajectory




Advection IlI: Semi-Lagrangian Methods

. T]t\e accuracy of the semi-Lagra
0

e The determination of the locat

ngian scheme depends on the accuracy

ion of the departure point (DP)

* The determination of the tracer mixing ratio at the DP, and hence on the
interpolation scheme that is used. A linear interpolation leads to excessive
smoothing. Cubic interpolation is preferred, but is computationally

expensive.

* The major advantage of the SU
CFL condition, and the timeste

" method is that it is not restricted by the
0 is chosen by accuracy considerations. It

gives minor phase errors, minimizes computational dispersion,

preserves shapes and can handle sharp discontinuities

* The major disadvantage of the

SLT scheme is that it does not formally

conserve integral invariants such as total mass or energy.



Advection Ill: Conservative Semi-Lagrangian
Methods

* To address this issue, rather than considering variables at specific grid
points, one can transport integral quantities or average values over
finite cell volumes (or cell areas in the case of 2-D formulations).

* In finite-volume-based Semi-Lagrangian methods, the value of the
advected field at a new time level is just the average value of the
departure cell defined by its upstream position at the previous
timestep.

 Lin and Rood (1996) have developed a mass conservative finite volume
semi-Lagrangian method, in which the boundaries (“ departure walls”
rather than “departure points”) of the grid volumes are transported to
the next step (“arrival walls”). Mass is conserved in the box during a
timestep. The CFL restriction does not apply.



example : one - dimensional diffusion equation
v 2
a o\ o
K >0 is the so - called diffusion coefficient
Fully explicit solution:

7 —V

: =2+
only stable if
2KA£ <1
(Ax)
Fully implicit solution:
vy

At (Ax) (Vi -2v" +wil)



Part 3. Numerical Solutions

* 1. Transport
e 2. Chemistry
e 3. Surface Processes




Simplest method is fully explicit:

£ =f"+At-S(z £")/p,

£ expressed in terms of known quanities
Requires very small time - steps.

Fully implicit is stable for any At :

£ =f"+At-S(¢ . £)/p,

However, S contains non- linear terms, and
accuracy is comprimised for large At.
lterative technigues are often used to
improve the accuracy of implicit methods.

Drarminant ic thea Noewrtan Banbhenan itaratinn wwhircrh raniiiraoe thnat



N | N 1 1 10 N1 IVI\JIIID \V,

(i.e. production and loss)

E Das Bild kann nicht angezeigt werden.

—e(x,)—Ax,1)-f+BEx,1)-f

S(f.x,1)

P.




* Shi ki t th t
Chemistry: Solving dt/dt = S/p

SEXD _ ex.t) - B(F. x.0) f
P,

and

il e eff foe, 8 DAk 0sB(F, T, X

* Hesstvedt proposes a semi-analytic solution

n+1)At]

fn+1 (f )SS + [f.;” . (f;)ss ] exp(—Bl, (fl” , l‘n+1 )At

where

(f )ee =€, (x,0)/ B.(f"", x,1)



Chemistry: Solving df/dt =S/p

* A multi-step method very appropriate for “stiff” systems has been
developed by Gear (1971).

* This algorithm is composed of the so-called backward difference
formulas up to order six.

* The method is extremely robust and stable but does require solving
nonlinear algebraic systems (like Euler backward algorithm).

* Time step and order of the method are continuously adapted to
meet user-specified solution error tolerances.

* Codes require much computer memory and tine; not practical for
multi-dimensional models.



Qs e T R I L Seetmption o

assume that it is in ,,dynamic steady state” i.e. dX/dt 0.

Example:
1
dOcStD ) jo, -0y—k-0('D)M—£k,-0('D)-H,0
do(lD)zo thus O('D)= Jop “O:

dt kM +k,H,O
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Urban or Regional or Synoptic to
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A ,trick” to make the QSSA approach work

. : PP Emissions
i or@emiyessbdeiasa Hegis the
definition of chemical ,families”: Species are l
grouped together so that the fast reactions
don‘t change the group concentration. NO
+hv +0;, +HO,
Example: NO,
NO, = NO + NO
4§ ? l +OH, deposition
dN ..
Tto = Emissions + j, -NO, — N()(k1 -0, +k, -HO3)
dNO,

. — N().(k1 -0, +k, -HO3)—jNO2 -NO, —k, -NO, - OH —deposition



i '

Lagrangian (or trajectory) models are in fact 3-dimensional 1n
that they take account of the horizontal and vertical transport of
an air parcel. ,,We define a transition probability density
O(X,,t)|X,t), such that the probability that the fluid element will
have moved to within volume (dx,dy,dz) centered at location X
at time ¢ 1s O(X,,t)|X;t) dx dy dz.** (Jacob, 1999)

t) t

While this approach implicitely accounts for small-scale processes like diffusion or
convection, 1t has disadvantages, because it neglects mixing of air parcels, and the
quantity Q is not directly observable. One way of using the lagrangian technique
efficiently 1s the particle model, where Q 1s approximated by a large number of point-

A PN N N N



Part 3. Numerical Solutions

* 1. Transport
e 2. Chemistry
e 3. Surface Processes
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Emissions (1)

In current models, emissions are typically specified as monthly mean
mass fluxes. These are read from file and interpolated to time t.

The compilation of emissions inventories is a labour-intensive task,
and these inventories still constitute one of the major uncertainties in
modeling. Today, first attempts have been made to estimate
emissions based on satellite and in-situ observations and using
Linverse“ models.



picalcategorl 2of ,bottom-up“ emissions inventories include:
piEdlentNed

ossil tuel'com
* biofuel combustion

US 10N

* vegetation fires

* biogenic emissions (plants and soils)

* volcanic emissions

* oceanic emissions

* agricultural emissions (incl. fertilisation)

etc.
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T(dﬂsrp;é)t &@ﬁh@ﬁlistil&l"particulate species from the atmosphere onto
surfaces in the absence of precipitation

Controlling factors: atmospheric turbulence, chemical properties of
species, and nature of the surface

Deposition flux: F =—v dC

v,. deposition velocity
C: concentration of species at reference height (~10 m)



Resistance analog

V, =
R +R, +R

R, = aerodynamic resistance.

R, = quasi laminar boundary layer resistance
R, = canopy resistance

atmosphere

R

A

R,

R

C

surface



Ra
Resistance of: Rb
Resistance of: RC
dynamic Resistance of:
sublayer
wet surface

interfacial laminary

sublayer sub-layer stomata
vegetation dry surface
sublayer




Wet deposition

evaporation - evaporation

nucleation _ dissolution
rain

formation

particles « . lgaseous species

in air reactions in air

below-cloud below-cloud
scavenging scavengV
evaporation - evaporation







The End




