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Part 1. Introduction









The Convective Boundary Layer















Part 2. Fundamental Equations



Variables and Equations in an Atmospheric 
(Physical) Model
• Variables: 

• Pressure p
• Density 
• Temperature T
• Wind components (u, v, w)

• Equations:
• Momentum equation (3 components)
• Thermodynamic equation
• Continuity equation
• Equation of state (perfect gas)

r



Fundamental Equations

• Momentum equations on a rotating sphere: Express the wind 
acceleration in response to different forces: gravity, gradient force, 
Coriolis force, dissipation
• Thermodynamic equation: Expresses the conservation of energy; 

importance of diabatic heating by absorption and emissions of 
radiative energy (solar and terrestrial), and of adiabatic processes 
(e.g., compression of air)
• Continuity equation: Expresses the conservation of mass



Chemical Composition of the Atmosphere

Concentration of atmospheric trace gas i:

chemistry
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Continuity Equation for a Chemical Species

x

S(Flux)in= [ρ v] (x) (Flux)out= [ρ v] (x + dx)



Continuity Equation for a Chemical Species

vector velocity  wind theis 
air ofdensity  mass  theis 
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S is the local chemical source of the chemical species

the chemical species



Continuity equation for 
Chemical Species

 

flux form:
¶ri

¶t
+Ñ × (riv) = Si

advective form:
¶f i
¶t

+ v × Ñf i =
Si
ra

where,
ri is the mass (or number) density of species i
ra is the air mass (or number) density

f i =
ri

ra

 is the mass (or volume) mixing ratio

Si is the production and loss rate of species i
v is the wind velocity vector

Mathematically describes the 
dynamical and chemical 
processes that determine the 
distribution of chemical species 

Chemical forcing

Transport



Part 3. Types of Chemical- Transport Models



Types of models

• Box (compartment) models:
understand the principles of feedback cycles

• 1D column models:
development of parameterisations

• 1D Lagrangian (trajectory) models:
transport studies

• 2D (Eulerian) models:
zonal mean state of the atmosphere (often in the stratosphere)

• 3D (Eulerian or Lagrangian) models:
detailed description of several processes in time and space



Part 4. Numerical Solutions



Solving the continuity equation for N chemical species

• N species leads to N coupled non-linear equations which rarely 
have an analytic solution.
• System is solved with numerical methods at discrete locations 

(“grid-points”)
• Differentials replaced by finite differences
• Finite resolution (time or space) implies some transport processes 

are unresolved (e.g. diffusion)
• Chemistry and transport handled as separate operations 





Finite Difference Methods
• In these methods, the space (or time) derivatives are replaced by finite 

difference approximations, and the solutions are produced at specified 
points in time and space.

• For example, df/dx is approximated at location x by
[f(x + Δx) – f(t – Δx)]/ 2 Δx

with a truncation error of O(Δx2), if Δx is the grid space
• Different algorithms exist to solve the differential equation  

• df/dx = F [f(x), x]. 
• Explicit methods (F is evaluated at time t) require very small grid space Δx to 

provide stable and accurate solutions; 
• Implicit methods (F is evaluated at time x + Δx) are more difficult to solve, 

but the solution is unconditionally stable. 



Model Resolution

200 km                                 25 km



Part 3. Numerical Solutions

• 1. Transport
• 2. Chemistry
• 3. Surface Processes



The treatment of Advection
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The simple one-dimensional case
The analytic (exact solution) for a constant wind speed u is known!

x

ρ(x,t)

t0 t
u

The initial function at t =t0 is ρ0(x)
The function at time t is  ρ(x,t) = ρ0(x-ut)



Numerical Approximation of the Advection Equation

Desired properties of an advection scheme:
• accuracy
• stability
• mass conservation
• monotonicity (shape preservation)
• positive definite fields
• local
• efficient

Three groups of algorithms:
•Eulerian
•Lagrangian
•Semi-Lagrangian



Euler versus Lagrange



Two different 
representations 
of advection



Euler



An Eulerian View

Mass balance 
equation is 

solved for 
each box of 

the grid. 

àFor a global model:
Horizontal Résolution: 50-300 km
Vertical Résolution : ~0.1 - 1 km

Current Models:
Up to ~ 106 grid boxes

Mass Balance on Several Fixed Atmospheric Boxes



Elementary Numerical Methods



Elementary Numerical Methods



Forward-in-time-backward-in-space: the upwind scheme

i is the index for space (x), n is the index for time (t)

For c > 0, this is the upwind scheme.

At each time step, the values on the right side of the 
equation are known and the value if u at time n+1 
can be found.

As shown by the graph, the numerical solution is 
different from the analytic solution. The solution is 
diffusive, but it is positive.

500 steps; 
c = 15 ms-1;     x = 1 km and   t = 30 sΔ Δ



Stability of the methods 

The Courant-
Friedrichs-
Lewy stability 
condition or 
CFL condition



Elementary Numerical Methods



Elementary Numerical Methods



Center-in-space, center-in-time: 
The leapfrog method

Figure: after 500 steps, c = 15 m s-1, Δx = 1 km 
and  Δt = 30 s

Amplification factor = 1
Has a computational mode in addition to a physical mode
Computational mode need to be filtered.



Filtering the Leapfrog 
solution

The Asselin Roberts filter with an adjustable 
filter factor “gamma”



Solving the Eulerian Advection Equation

• Equation is conservative: need to avoid diffusion or 
dispersion of features. Also need mass conservation, 
stability, positivity…

• All schemes involve finite difference approximation of 
derivatives : order of approximation → accuracy of solution

• Classic schemes: leapfrog, Lax-Wendroff, Crank-
Nicholson, upwind, moments…

• Stability requires Courant number uΔt/Δx < 1
… limits size of time step

• Addressing other requirements (e.g., positivity) introduces 

i iC Cu
t x

¶ ¶
= -

¶ ¶



Lagrange



CX(xo, to)
CX(x, t)

transport

XdC E P L D
dt

= + - -

Following an Air Parcel in a Plume

CX
CX,b

,( )X
dilution X X b

dC E P L D k C C
dt

= + - - - -
© D. Jacob, Introduction to Atmospheric Chemistry, 
Princeton University Press

A Lagrangian View

Following a Single Air Parcel
dX/dt = v(X,t)



C(x, to)

Concentration field at time t, defined by n particles

C(x, to+Δt)
Trajectories 
during time 
interval Δt

PROS over Eulerian models:
• no Courant number restrictions
• no numerical diffusion/dispersion
• easily track air parcel histories
• invertible with respect to time

CONS:
• need very large # points for statistics
• inhomogeneous representation of 

domain
• convection is poorly represented
• nonlinear chemistry is problematic

© D. Jacob, Introduction to Atmospheric Chemistry, 
Princeton University Press

A Lagrangian View
Following a Large Number of Air Parcels



There is no single advection scheme that is universally best. 

• Eulerian Methods are limited by the CFL Condition that constraints the 
choice of the time. 
• Low-order algorithms such as the upstream method preserve the sign of the 

solution, but are excessively diffusive.  
• Higher-order algorithms are generally not monotonic and occasionally produce 

undesired negative values.
•
• Lagrangian methods are popular for source-oriented and receptor-oriented 

transport problems in which one is concerned with transport from a point 
source or transport contributing to concentrations at a receptor point. 
• However, they do not provide the regular full-domain solution achievable by 

Eulerian methods and cannot properly represent nonlinear chemistry or 
aerosol microphysics. 



Grid-point models

Problem at the poles !



Advection
•Desired properties of an advection scheme:

• accuracy
• stability
• mass conservation
• monotonicity (shape preservation)
• positive definite fields
• local
• efficient

•Reviews of transport algorithms are given by Oran and
Boris (1987), Rood (1987), etc.

•Three groups of algorithms:
•Eulerian



Advection I: Eulerian Methods

 

example :  one - dimensional advection equation
¶y
¶t

+
¶F
¶x

= 0

flux F = cy
solved e.g. by the 'leap - frog'  method:

y j
n+1 =y j

n-1 -
Dt
Dx

Fj+1
n - Fj-1

n[ ]
Stable if Courant -Friedricks -Lewy (CFL) 
condition is satisfied:
cDt
Dx

£1

Assume a property (such as the concentration) than is transported
in direction x with a constant velocity c



Advection I: Eulerian Methods
Courant-Friedrichs-Lewy (CFL) condition:

1, »£
D
D

ConstwithConst
x
tc

The time step must be small enough, so that an air parcel 
does not pass through more than 1 grid box during one 
time step. 

This is a major restriction for many global models beacuse 
near the pole, the CFL condition is often violated unless 
very small timesteps are adopted. Eulerian methods are 
routinely used in regional models.

Solution: Modified grids towards high latitudes or other 
algorithms



Advection I: Eulerian Methods

• Other discretizations are possible:
• The Euler forward (explicit) scheme is unconditionally unstable
• The Upwind method is diffusive
• The Leapfrog method is not monotonic
• Improved methods: Smolarkiewicz, Bott, Prather.
• The CFL condition must be verified to ensure stability.
• Only nonlinear algorithms produce stable solutions, maintain steep 

gradients, and preserve monotonicity.



Advection I: Eulerian Methods

The Prather Scheme
• In this method, the transported property (tracer mixing ratio) is 

expressed in each grid box by a quadratic function in the x, y, and z 
directions (including cross terms). This function is decomposed into 
orthogonal polynomials over each grid box.  Zeroth, first and second 
order moments are calculated over each box. 
• Transport is performed sequentially in the 3 directions x, y, and z.
• The first step is to decompose the moments for each gridbox between 

the fraction for the gridbox that will be moved by advection into the 
neighboring box, and the fraction that will remain in the original box. 



Advection I: Eulerian Methods

The Prather Scheme
• In the second step, which represents the advection in 1 direction, 

new moments are calculated in each grid box through the addition 
of the moments calculated at the previous timestep in the two 
adjacent sub-grid boxes that contribute to the tracer in a grid box 
at the new timestep.

• Dividing of the moments in a given grid box in sub-moments, and 
reforming the moments (by addition of sub-moments) after an 
advection step, guarantees conservation of moments (i.e., mass) 
during the advection process. 



Advection II: Lagrangian Methods

• In Lagrangian schemes, distinct air parcels, in which tracers are assumed 
to be homogeneously mixed, are followed as they are displaced by the 
winds. In the absence of source/sinks processes, the tracer mixing ratio 
remains constant in the air parcel.
• Lagrangian methods are relatively simple in concept and are not subject 

to spurious diffusion. Errors can, however, accumulate over the 
integration. Typically 100,000 parcels are used in a global transport 
model. Parcels may “bunch up” in certain areas and leave others 
without parcels to track.  This problem is avoided in the Semi-
Lagrangian methods where at every new time step, one examines the 
back trajectory of the parcel that arrives at a given grid point of the 
model.



Advection III: Semi-Lagrangian Transport

In semi-Lagrangian transport 
schemes, a backward trajectory is 
computed for each corner point of a 
grid cell. The new mixing ratio f of 
species i is then computed by 
interpolation („remapping“) of the 
concentration field of timestep t0
onto the model grid at timestep t.

Thus fAP (x,t) = fDP (x0, t0) 

The location of the upstream departure 
point is found by solving the equation dx/dt 
= v (x, t). This equation has to be solved 
iteratively since v varies with along the back 
trajectory that needs to be determined.

(x0,t0)

(x,t)

Departure
point DP

Arrival
point AP



Advection III: Semi-Lagrangian Transport

trajectory  

x 0 = x + v(x,t)dtt

t-Dtò

(x0, t-∆t)

(x, t)
Accuracy depends greatly on
Interpolation scheme used.

Common in modern GCMs



Advection III: Semi-Lagrangian Methods

• The accuracy of the semi-Lagrangian scheme depends on the accuracy 
of 

• The determination of the location of the departure point (DP)
• The determination of the tracer mixing ratio at the DP, and hence on the 

interpolation scheme that is used. A linear interpolation leads to excessive 
smoothing. Cubic interpolation is preferred, but is computationally 
expensive.

• The major advantage of the SLT method is that it is not restricted by the 
CFL condition, and the timestep is chosen by accuracy considerations. It 
gives minor phase errors, minimizes computational dispersion, 
preserves shapes and can handle sharp discontinuities 
• The major disadvantage of the SLT scheme is that it does not formally 

conserve integral invariants such as total mass or energy. 



Advection III: Conservative Semi-Lagrangian 
Methods
• To address this issue, rather than considering  variables at specific grid 

points, one can transport integral quantities or average values over 
finite cell volumes (or cell areas in the case of 2-D formulations). 
• In finite-volume-based Semi-Lagrangian methods, the value of the 

advected field at a new time level is just the average value of the 
departure cell defined by its upstream position at the previous 
timestep.
• Lin and Rood (1996) have developed a mass conservative finite volume 

semi-Lagrangian method, in which the boundaries (“ departure walls” 
rather than “departure points”) of the grid volumes are transported to 
the next step (“arrival walls”). Mass is conserved in the box during a 
timestep. The CFL restriction does not apply.



Un-resolved transport: Diffusion

 

example :  one - dimensional diffusion equation
¶y
¶t

=
¶
¶x

K ¶y
¶x
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K > 0  is the so - called diffusion coefficient 
Fully explicit solution:
y j

n+1 -y j
n

Dt
=

K
Dx( )2

y j-1
n - 2y j

n +y j+1
n( )

only stable if
2KDt
Dx( )2

£1

Fully implicit solution:
y j

n+1 -y j
n

Dt
=

K
Dx( )2

y j-1
n+1 - 2y j

n+1 +y j+1
n+1( )



Part 3. Numerical Solutions

• 1. Transport
• 2. Chemistry
• 3. Surface Processes



Solving df/dt = S/r

 

Simplest method is fully explicit :
f n+1 = f n + Dt ×S(tn ,f

n ) /ra

f n+1 expressed in terms of known quanities
Requires very small time - steps.

 

Fully implicit is stable for any Dt :
f n+1 = f n + Dt ×S(tn+1,f

n+1) /ra

However, S contains non- linear terms, and
accuracy is comprimised for large Dt.  
Iterative techniques are often used to
improve the accuracy of implicit methods.

Euler Forward

Euler backward

Prominent is the Newton-Raphson iteration which requires that 



Chemical forcing (S)
(i.e. production and loss)

Das Bild kann nicht angezeigt werden.

 

S(f,x,t)
ra

= e(x,t) -A(x,t) × f +B(f,x,t) × f

External forcing
Independent of f

Non-linear forcing
Bi-molecular and
tri-molecular reactions

First-order forcing
Photolysis, airglow, …



Chemistry: Solving df/dt = S/r
• Shimazaki writes the source term

Iterations (m) are performed for nonlinear cases.

• Hesstvedt proposes a semi-analytic solution
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Chemistry: Solving df/dt = S/r

• A multi-step method very appropriate for “stiff” systems has been 
developed by Gear (1971). 

• This algorithm is composed of the so-called backward difference 
formulas up to order six. 

• The method is extremely robust and stable but does require solving 
nonlinear algebraic systems (like Euler backward algorithm).

• Time step and order of the method are continuously adapted to 
meet user-specified solution error tolerances.

• Codes require much computer memory and tine; not practical for 
multi-dimensional models.



Quasi steady state approximationIf the loss of a chemical species is much faster than its production (and fast 
compared to the length of a day), it is generally a reasonable assumption to 
assume that it is in „dynamic steady state“, i.e. dX/dt = 0.

( ) ( ) ( ) OHOMOOO
2

1
2

1
13

1

1 ××-××-×= DkDkj
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Dd
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D DO
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Example:



Validity of QSSA

good

reasonable



Chemical Families
A „trick“ to make the QSSA approach work 
for longer-lived species as well is the 
definition of chemical „families“: Species are 
grouped together so that the fast reactions 
don‘t change the group concentration.

( )32312 HOONONOEmissionsNO
2

×+×-×+= kkj
dt
d

NO

Example:
NOx = NO + NO2

+O3, +HO2

NO2

NO
+hn

Emissions

+OH, deposition

( ) depositionOHNONOHOONONO
2323231

2
2

-××-×-×+××= kjkk
dt
d

NO



Lagrangian models
Lagrangian (or trajectory) models are in fact 3-dimensional in 
that they take account of the horizontal and vertical transport of 
an air parcel. „We define a transition probability density 
Q(X0,t0|X,t), such that the probability that the fluid element will 
have moved to within volume (dx,dy,dz) centered at location X
at time t is Q(X0,t0|X,t) dx dy dz.“ (Jacob, 1999)

While this approach implicitely accounts for small-scale processes like diffusion or 
convection, it has disadvantages, because it neglects mixing of air parcels, and the 
quantity Q is not directly observable. One way of using the lagrangian technique 
efficiently is the particle model, where Q is approximated by a large number of point-
like particles (~10000), and a trajectory for each particle is computed using stochastic 

t0 t



Part 3. Numerical Solutions

• 1. Transport
• 2. Chemistry
• 3. Surface Processes



Model surface description

5 soil layers

Sea ice Bare soil

depth (~ 60 m)

Sea
Wet surface

Snow/ice

z (~ 30 m)

z0

Rstomatal ∫(PAR, soil moisture)
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Vegetation model

Atmospheric model



Emissions (1)

In current models, emissions are typically specified as monthly mean 
mass fluxes. These are read from file and interpolated to time t.
The compilation of emissions inventories is a labour-intensive task, 
and these inventories still constitute one of the major uncertainties in 
modeling. Today, first attempts have been made to estimate 
emissions based on satellite and in-situ observations and using 
„inverse“ models.



Emissions (2)Typical categories of „bottom-up“ emissions inventories include:
• fossil fuel combustion
• biofuel combustion
• vegetation fires
• biogenic emissions (plants and soils)
• volcanic emissions
• oceanic emissions
• agricultural emissions (incl. fertilisation)
etc.



Chemical Weather seen from Space



(Dry) DepositionTransport of gaseous and particulate species from the atmosphere onto 
surfaces in the absence of precipitation

Controlling factors: atmospheric turbulence, chemical properties of 
species, and nature of the surface

CvF d-=Deposition flux:

vd: deposition velocity
C: concentration of species at reference height (~10 m)



Ra = aerodynamic resistance.
Rb = quasi laminar boundary layer resistance
Rc = canopy resistance

Resistance analog

cba
d RRR
v

++
=

1 atmosphere

surface

Ra

Rb

Rc



Dry deposition velocity
cba

d RRR
V

++
=

1

Ra
Resistance of:

dynamic
sublayer

interfacial
sublayer

vegetation
sublayer

Rb
Resistance of:

laminary
sub-layer

Rc
Resistance of:

wet surface

dry surface

stomata



Wet deposition
Cloud Water

chemical reactions

particles
in air

gaseous species
in air

Rain, snow
chemical reactions

rain 
formation

below-cloud
scavenging

below-cloud
scavenging

reactions

evaporationevaporation

interception

evaporation evaporation

nucleation dissolution



Thank you!



The End


