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Frequently asked question



Basic terms

• Atmospheric tracer: a compound, which is transported 
with atmospheric flows but does not affect them 
(sufficiently low concentration)

➢ some impact exists always: feedback to meteorological processes

• Tracer lifetime: a time period needed for 2-fold (or e-fold) 
reduction of amount of the tracer in the atmosphere

➢ condition- and process-dependent: e.g. lifetime with regard to 
advection

➢ general meaning: lifetime is related to relaxation times for any 
process involving this tracer (not 1:1 though)

• Spatial and temporal scales

➢ related to lifetime

➢ temporal scales are translated into spatial ones via wind speed

➢ processes and their imporatnce are related to scales
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What is atmospheric composition model?

I.Repin. Zaporozhje Cossacks are writing a

letter to Turkish sultan

• Model is never a copy of reality

➢ It represents only those features, which are deemed important for a 

specific application

• The extent of their similarity is to be established in each specific case

W.Kandinski. Cossacks



Dispersion equation: vital features of nature 

formalized

• Mass conservation

➢ transport

➢ sources

➢ sinks

• Scale separation

➢ mean flow

➢ turbulence

• Closure problem

➢ K-theory → turbulent diffusion coefficient
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Classifications of models

➢ Model principles 

– Eulerian

– Lagrangian

– Gaussian

– statistical Monte-Carlo

➢ Scales 

– global

– continental

– regional

– local/urban



Classifications of models.2

➢ Chemicals 

– acid

– ozone

– greenhouse gas

– inert aerosol/dust

– radio-activity

– toxic

– persistent pollutants

➢ Model media 

– atmospheric

– multi-media

– integrated models



Classifications of models.3

➢ Input data 

– climatological

– real-time data

➢ Time dimension: direction, horizon

– re-analysis

– now-casting

– forecasting

➢ Problem to solve 

– forward

– inverse
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ACM 

components

• Modules

• 14 transformation modules 

• 9 source terms, 

• All modern DA techniques: 3D-
Var,,4D-Var, EnKF, EnKS

• Domains: from global to beta-meso
scale (~1km resolution)

• Any meteo input that follows WMO 
standards

• Technically
• 192 FORTRAN-2005 modules, 

~250 classes, OMP+MPI parallel

• 18 MB of code (~130,000 lines)

• The largest FMI own model

• Installed in a dozen of countries for 
research and operational purposes

• ~10,000 lines in ~100 environment scripts 
(Python-Shell)
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Physiography,

land use

forest mapping

SILAM AQ assessment and forecasting platform

Active fires

EVALUATION

and 

DATA  ASSIMILATION
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Model core: transport algorithm 

(advection scheme)

• A key part of every chemistry transport model

• Derived from mass conservation law

➢ Expresses and guarantees mass conservation in the model

• Interacts with all other modules

• Very simple basic form…

• … but strikingly difficult to

solve numerically

• Two key approaches:

➢ Eulerian

➢ Lagrangian
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Lagrangian model principles

• A tracers release is represented via many discrete 

volumes of air enriched with the corresponding tracer: 

Lagrangian particles

• Lagrangian particle is 

➢ NOT a particle (in the common meaning of the word)

➢ a finite-size volume of air completely isolated from other volumes

• LPs move along wind streamlines: advection term

• LPs get randomly relocated: diffusion term

• LPs can contain reacting chemical admixtures

• LPs do not interact with each other

• Final concentration is the sum of mass of many LPs that 

appeared to be in a large volume, divided by that volume



LP motions

• Transport with wind:

• Diffusion: Langevin equation (drift a, diffusion b, Wiener 

zero-mean dt-variance process)

• Connection to dispersion equation and Eulerian formalism
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Chemical transformations

• Lagrangian models can support linear chemical 

calculations

➢ the reactions are of the first order, i.e. the rates are independent 

from the concentrations of the species

➢ radioactive decay

• Non-linear transformations can also be imagined… in 

theory



Problems of Lagrangian models

• Non-linear processes are all but impossible

• Boundary conditions are all but impossible

• Representativeness problem: limited number of particles 

forced a single LP to represent large volume of air

➢ Increase of the LP number leads to prohibiting computational 

demand

• All-in-all, lagrangian models are good for point source of 

point receptor, for limited time period and region size. 

Example: forward and inverse emergency applications



Eulerian modelling

• Directly approaching the dispersion equation

• Discretization of every term using finite-size meshes: (3D) 

Eulerian grid

• Non-linearities are naturally included

• Boundary conditions are simple



Numerical solution: why a problem?
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Numerical diffusion: solutions exist

• Modern approaches 

are capable of reducing 

or nearly eliminating 

numerical diffusion

• … but nothing comes

for free: higher order

non-linear distortions

a

SCD

b

SCD

c

SCD

d

SCD

Courtesy: M.Galperin



Problem of Eulerian models

• Complexity

• For “trajectory” adepts: no such term

➢ Might complicate solutions for strictly time-driven processes, such

as radioactive decay
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Model Quality Assurance

• Verification:  confirmation that the model is correctly 
implemented with respect to the conceptual model

➢ mission impossible

• Validation: demonstration that a model shows a 
satisfactory range of accuracy sufficient for the intended 
application. 

➢ Requires a specific purpose and objectives, against which the 
validity is determined

➢ mission impossible

• Evaluation: quantification of the model performance 
against the metrics deemed important for the possible 
model applications

➢ largely resembles random search: many metrics, case studies, …



Mission impossible?

• No number of case studies, model tests or alike

constitute a formal proof

➢ Turing’s halting problem: determining, from a description 

of an arbitrary computer program and an input, whether 

the program will finish running or continue to run forever. 

➢ Alan Turing, 1936: there is no generic algorithm to solve 

the halting problem for all possible program-input pairs

• All numerical systems can only be DISproven – by a 

negative example

• Increasing number of tests and history of the model 

applications reduces the chances that the next case will 

fail (but never zero it)

Alan Turing, 1928

age 16



Incomplete verification: a real-life case

• Example: supercooled ternary solution 
mixture parameterization

➢ Carslaw et al, 1995, JRL (F-77 code is in the 
paper body)

➢ Applied in a number of models, used for decades

➢ Failed within 3 days in SILAM stratospheric simulations

• FORTRAN operator:
xsb = (-ks(1)-ks(2)/T-sqrt((ks(1)+ks(2)/T)**2 -
4.*(ks(3)+ks(4)/T)*(ks(5)+ks(6)/T+ks(7)*ln(T)-ln(pw)))) / 
(2.*(ks(3)+ks(4)/T))

• Breaks down if T = 211.92  0.01K

• Equation:



Model-measurement comparison: 

evaluation

• The only connection between model and reality

• Data sets from different origin 

➢ point observations vs grid-mean model results

➢ representativeness error

➢ instrumental errors

• Observations are expensive => sparse

• Limited number of observed variables

• Specific statistical methods are required to obtain non-
trivial conclusions



Examples of evaluation statistics

• http://atmosphere.copernicus.eu: Copernicus Atmospheric 

Monitoring Service

http://atmosphere.copernicus.eu/
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Example: health impact (validation attempt)

• SILAM birch pollen         

➢ scatter plot                             relevant statistical measures
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Model inter-comparison

• Useful if lacking measurements

• Similar features of data 

• Large data sets => high precision

• Wide variety of analytical methods

• Ensemble model

• Possibly, no connection to reality
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Data assimilation in a classical form

• The approach designed for meteorological forecasting

➢ Corrects the model state, i.e. the predicted variables (T,q,U,V,p,...)

➢ Works there

time

__ free-model run

__ run with assim.

__ fcst with assim.

__ fcst with fusion

observations



What to assimilate?
chemistry scheme for SOx/NOx/NHx

More of organic chemistry

Soifev, 2000



What do we observe routinely?

More of organic chemistry

𝑃𝑀2.5
෍

< 2.5𝜇𝑚
10

10

Soifev, 2000



AC observations is a problem
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Daily count of observations in ERA-Interim

 o3 no2 pm25 pm10 so2 
20161101 9839 11424 3746 8628 5826 

 

Daily count of observations in CAMS: example of 1.11.2016

Dee et al, 2011



More bad news

• Chemical-system state vector contains concentrations of 

numerous species…

• … and adjusting this vector is not enough: 

➢ forced motion of this non-autonomous non-linear system may be 

(and often is) the most significant driver

➢ the own system relaxation is often fast and quickly eliminates the 

effect of DA



Memory of the troposphere

SO2, hourly mean, µg m-3

Vira & Sofiev, 2012



Memory of the troposphere

SO2, hourly mean, µg m-3

Vira & Sofiev, 2012
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Atmospheric composition DA’s 

grand challenge

• Classical assimilation of concentrations makes little

sense: the model forgets the impact much too fast

• Reason: mathematically, the system has short relaxation 

time, thus being driven by external forcing rather than by 

initial conditions



How to handle such system? 

• Ignore the difficulties and system constraints and apply 
known techniques with available observations. 
State estimation with 

➢ OI / 3D-VAR

• Account for the system constraints and chemical links. 
State estimation with

➢ 4D-VAR / EnKF

• Expand the control variable 

➢ include emission fluxes

➢ include meteorology

• Consider non-classical forms of “DA-looking” techniques

➢ data fusion

➢ optimised ensemble 



Computational experiment: SOx in Europe

• SILAM experiment 8-22.02.2006

• 3D-VAR, 4D-VAR

• state estimation problem

SO2 emission                       SO2 observations

Vira & Sofiev, 2012



Effect of complexity: 3D-VAR vs 4D-VAR

• SO2 near-surface concentration, changes due to DA

4D-VAR

diagonal error covariance

3D-VAR

non-diagonal error covariance

Vira & Sofiev, 2012



Effect on scores

Vira & Sofiev, 2012



How to handle such system? 

• Ignore the difficulties and apply known techniques with 

available observations. State estimation with 

➢ OI / 3D-VAR

• Account for the system constraints and chemical links. 

State estimation with

➢ 4D-VAR / EnKF

• Expand the control variable: find what has longer impact

➢ include emission fluxes

➢ include meteorology

• Consider non-classical forms of “DA-looking” techniques

➢ data fusion

➢ optimised ensemble 



Source term inversion

time

__ free-model run

__ run with assim.

__ fcst with assim.

__ fcst with fusion

observations

?



Emission correction factor

• Same SOx experiment, now with 4D-VAR towards 

emission

  
 1 

Day 1 correction                                    Weeks 1-2 mean correction

Vira & Sofiev, 2012



Comparison of the approaches

  
 1 

reference run

3D-VAR

4D-VAR state+emissoin

Site: AT 9, Austria                    Site:  IT 17, Italy

Obs

Vira & Sofiev, 2012
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Data Assimilation vs Data Fusion

• Data assimilation

• Data fusion

time

time

__ free-model run

__ run with assim.

__ fcst with assim.

__ fcst with fusion

observations



Data assimilation vs data fusion

• DA: data are used to adjust model internal variables, 

parameters or forcing

➢ model is “informed” about deviation from the observations and

asked to behave better

• DF: data are used to adjust model output after the

simulations are finished

➢ model has no clue about its errors, it runs without feedback from 

observations

➢ all corrections are applied as post-processing of the model 

predictions

• A simple example: bias correction

• Promising: error of model predictions (e.g., bias) can be 

less varying than the predictions themselves



Ensemble-based data fusion: works!

Weights of individual 

models

Error of individual models, simple and optimised 

ensemble

Sofiev et al, 2017



Summary model development / application

• Atmospheric Composition model is a numerical realization of the 

mass conservation law

• No universal solution: model is not an image of the real world but an 

image of a few processes of the real world

• Two main types of transport kernels: Lagrangian and Eulerian

➢ Solve the same dispersion equation

➢ There is rigorous (well, mostly) transformation from one formalism to another

➢ Lagrangian: simple things are simple, complicated things are not possible

➢ Eulerian: simple things are complicated, complicated things are possible

• Take the model, which fits the task

➢ Emergency response: Lagrangian is popular but Eulerian solutions are 

challenging this status-quo

➢ Atmospheric composition: exclusively Eulerian



Summary model evaluation

• Model verification / validation / evaluation

➢ evaluation is the most-meaningful objective for the model as a 

whole, can (and should) be performed by the model user

➢ The principle of known quantified quality

• Verification is applied for model sub-systems, 

development stage

• Validation is the ultimate goal in model applications, rarely 

reached

➢ Each model application requires tailored evaluation, followed by 

decision of the model applicability for the task

➢ Statistical evaluation measures are task-specific



Summary for Data Assimilation

• Atmospheric composition is tough for data assimilation:

violates almost all assumptions behind DA methods

• Classic methods give ~20% of improvement for the 

analysis, next to nothing for the follow-up forecast

• Expansion of control variable is among the most-

promising albeit complicated approaches for improving the 

forecast

• Data fusion technology shows very promising first results


