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A
Frequently asked question

Where's it
come from ??




Basic terms

« Atmospheric tracer: a compound, which is transported
with atmospheric flows but does not affect them
(sufficiently low concentration)

> some impact exists always: feedback to meteorological processes

« Tracer lifetime: a time period needed for 2-fold (or e-fold)
reduction of amount of the tracer in the atmosphere

> condition- and process-dependent: e.g. lifetime with regard to
advection

> general meaning: lifetime is related to relaxation times for any
process involving this tracer (not 1:1 though)

« Spatial and temporal scales
> related to lifetime

> temporal scales are translated into spatial ones via wind speed
> processes and their imporatnce are related to scales
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What Is atmospheric composition model?

« Model is never a copy of reality

> It represents only those features, which are deemed important for a
specific application

« The extent of their similarity is to be established in each specific case

|.Repin. Zaporozhje Cossacks are writing a W.Kandinski. Cossacks
letter to Turkish sultan
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Dispersion equation: vital features of nature
formalized

W(z,+52/2) T Sx
. ) | v
+ Mass conservation o e
> transport (o)’ .
u(x,-5%/2) u(x,+%/2)
> Sources Vo
. V(Y,-0) .
> sinks
« Scale separation 7 w(zy5212)
|
> mean flow oc 3.0
> turbulence ~ _Z (uc)+E-R

* Closure problem

> K-theory — turbulent diffusion coefficient



Dispersion equation: vital features

. W(z,+52/2) T Sx
 Mass conservation sy /T T vyps
> transport E(X . 7|
> sources Wxxi2) | ’ T utkon2)
» sinks w7
+ Scale separation | -
> mean flow
oc °, 0
> turbulence — = Z— (u c)+E-R
* Closure problem ot = OX
> K-theory — turbulent diffusion coefficient
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Classifications of models

> Model principles

— Eulerian

— Lagrangian

— Gaussian

— statistical Monte-Carlo
> Scales

— global

— continental

— regional

— local/urban



Classifications of models.2

> Chemicals
— acid
— ozone
— greenhouse gas
— inert aerosol/dust
— radio-activity
— toxic
— persistent pollutants
> Model media
— atmospheric
— multi-media

— integrated models



Classifications of models.3

> Input data
— climatological
— real-time data
> Time dimension: direction, horizon
— re-analysis
— now-casting
— forecasting
> Problem to solve
— forward
— Inverse



Content

» Parts of a dispersion model
« Transport term dispersion models

> Lagrangian and Eulerian models

« Model Quality Assurance
« Data Assimilation
 Summary



ACM
components

Modules
14 transformation modules
9 source terms,

All modern DA techniques: 3D-
Var,,4D-Var, EnKF, EnKS

Domains: from global to beta-meso
scale (~1km resolution)

Any meteo input that follows WMO
standards

Technically

192 FORTRAN-2005 modules,
~250 classes, OMP+MPI parallel

18 MB of code (~130,000 lines)
The largest FMI own model

Installed in a dozen of countries for
research and operational purposes

~10,000 lines in ~100 environment scripts
(Python-Shell)
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SILAM AQ assessment and forecastlng platform ®
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Model core: transport algorithm
(advection scheme)

« A key part of every chemistry transport model

Derived from mass conservation law

> EXpresses and guarantees mass conservation in the model

Interacts with all other modules

. . Eulerian:
Very simple basic form...

3
.. but strikingly difficult to =T _ Zﬂ (u.c)
solve numerically 8’[ =
Two key approaches: Lagrangian:

> Eulerian dr.

I
» Lagrangian E = U



Lagrangian model principles

A tracers release is represented via many discrete
volumes of air enriched with the corresponding tracer:
Lagrangian particles

Lagrangian particle is
»> NOT a particle (in the common meaning of the word)

> a finite-size volume of air completely isolated from other volumes

LPs move along wind streamlines: advection term
LPs get randomly relocated: diffusion term

LPs can contain reacting chemical admixtures
LPs do not interact with each other

Final concentration is the sum of mass of many LPs that
appeared to be in a large volume, divided by that volume



LP motions

« Transport with wind: % —u.

at

 Diffusion: Langevin equation (drift a, diffusion b, Wiener
zero-mean dt-variance process)

dv,
dt

e Connection to dispersion eguation and Eulerian formalism

a (X, 0,t)dt+b, (X,0,0)dW, o, ~ [y K; At

dc oc (ac OC acuj oC OC
—u, |

— U, +—U, +
dt ot (ox ' ox, ° ox



Chemical transformations

« Lagrangian models can support linear chemical
calculations

> the reactions are of the first order, i.e. the rates are independent
from the concentrations of the species

> radioactive decay

* Non-linear transformations can also be imagined... in
theory



Problems of Lagrangian models

* Non-linear processes are all but impossible
« Boundary conditions are all but impossible

* Representativeness problem: limited number of particles
forced a single LP to represent large volume of air

> Increase of the LP number leads to prohibiting computational
demand

 All-in-all, lagrangian models are good for point source of
point receptor, for limited time period and region size.
Example: forward and inverse emergency applications



D

Eulerian modelling

« Directly approaching the dispersion equation

» Discretization of every term using finite-size meshes: (3D)
Eulerian grid

* Non-linearities are naturally included

* Boundary conditions are simple



why a problem?

| solution

Numerica
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D

Numerical diffusion: solutions exist

 Modern approaches w
are capable of reducing "
or nearly eliminating
numerical diffusion

e ... but nothing comes
for free: higher order
non-linear distortions

Courtesy: M.Galperin



Problem of Eulerian models

« Complexity
* For “trajectory” adepts: no such term

> Might complicate solutions for strictly time-driven processes, such
as radioactive decay
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Model Quality Assurance

« Verification: confirmation that the model is correctly

Implemented with respect to the conceptual model
> mission impossible

Validation: demonstration that a model shows a

satisfactory range of accuracy sufficient for the intended
application.

> Requires a specific purpose and objectives, against which the
validity is determined

> mission impossible

Evaluation: quantification of the model performance
against the metrics deemed important for the possible
model applications

> largely resembles random search: many metrics, case studies, ...



Mission impossible?

« NoO number of case studies, model tests or alike
constitute a formal proof

» Turing’s halting problem: determining, from a description
of an arbitrary computer program and an input, whether

the program will finish running or continue to run forever. ™= 3 Turing, 1928
age 16

> Alan Turing, 1936: there is no generic algorithm to solve
the halting problem for all possible program-input pairs

« All numerical systems can only be DISproven — by a
negative example

 Increasing number of tests and history of the model
applications reduces the chances that the next case will
fail (but never zero it)



Incomplete verification: a real-life case

« Example: supercooled ternary solution
mixture parameterization

> Carslaw et al, 1995, JRL (F-77 code is in the
paper body)

> Applied in a number of models, used for decades
> Failed within 3 days in SILAM stratospheric simulations

« FORTRAN operator:
xsb = (-ks(1)-ks(2)/T-sqrt((ks(1)+ks(2)/T)**2 -
4.*(ks(3)+ks(4)/T)*(ks(5)+ks(6)/T+ks(7)*In(T)-In(pw)))) /
(2.%(ks(3)+ks(4)/T))

e Breaksdown if T=211.92 + 0.01K
* BQuation: x, xs, = {-kikp/T - [(ky+ko/T)2- 4(k3 +ky/T) X

(ks+ke/T+kyIn(T)-In(p, )12} 1 2(k3+k4/T).



Model-measurement comparison:
evaluation

« The only connection between model and reality

Data sets from different origin

> point observations vs grid-mean model results
> representativeness error
> Instrumental errors

Observations are expensive => sparse

Limited number of observed variables

Specific statistical methods are required to obtain non-
trivial conclusions



Examples of evaluation statistics

D
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http://atmosphere.copernicus.eu/

A
Examples of evaluation statistics

D

o hitp://atmosphere.copernicus.eu: Copernicus Atmospheric
Monitoring Service

CAMS - Verification - Europe
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http://atmosphere.copernicus.eu/

pollen ECMWF LU (grains/m3)

ISTZ

Example: health impact (validation attempt)

« SILAM birch pollen

> scatter plot relevant statistical measures
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Siljamo et al, 2012



Model inter-comparison

« Useful if lacking measurements

« Similar features of data

« Large data sets => high precision
« Wide variety of analytical methods

* Ensemble model

* Possibly, no connection to reality
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Data assimilation in a classical form &

« The approach designed for meteorological forecasting

> Corrects the model state, i.e. the predicted variables (T,q,U,V,p,...)
> Works there

___free-model run
___run with assim.
- __ fest with assim.
* __fest with fusion
% Observations




What to assimilate?
chemistry scheme for SOX/NOx/NHX

—
/
/ More-bfrorgerrechrer sty
OH HO, v m
CH, o, CH?’OW < [[ NH,NO 5O, N
D%W vy
OH| hv| hv bW
HO, v
HOQ$ " I co (15\13)15804
\ 4 A D »
y yhv -
oz S o for
SO,
CsHg CsHg 21—
TN

Soifev, 2000

Emission:




What do we observe routinely?

—_ More of organic chemistry =

Soifev, 2000

Emission:

@ Anth,VOC

— |
CH4 OH HO, v R 2_
CH;0, CH;OOH| oH | HCHO NH,NO, /3/0/4
OH| hv| hv W
T o FE S (NH,),;SO}
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.04
®




AC observations is a problem

model state
concentrations
~100

emission fluxes
~10

model parameters
meteorology ~10

Model variables

— (_observed (~1D

—

—

S—

— (_non-observed (~100

— (emission (10-@

physical state
meteorology, ~10

Each variable is a map of 10°- 108 grid cells



AC observations is a problem

Ea

Number of data assimilated in ERA-Interim 4D-Var, per day

107

108

Gl

108 o L_ ) e et
104

108

Dee et al, 2011

mm Surface pressure
2-m relative humidity
10-m wind
Scatterometer wind

1989 1991 1993 1995

Year

1997 1999 2001

= Upper-air temperature

= Upper-air specific humidity

== Upper-air wind
== Ozone

2005 2007 2009

= Brightness temperature
= Total precipitable water
== Bending angle

Daily count of observations in ERA-Interim

o3

no2

pm25

pm10 so2

20161101

9839

11424

3746

8628 5826

Daily count of observations in CAMS: example of 1.11.2016



More bad news

Chemical-system state vector contains concentrations of
numerous species...

... and adjusting this vector is not enough:

> forced motion of this non-autonomous non-linear system may be
(and often is) the most significant driver

> the own system relaxation is often fast and quickly eliminates the
effect of DA

D



Memory of the tropospﬁere

SO,, hourly mean, pg m-3

-\

S04, Cold-start, 2 days , +0, ug S m-3

S04, Cold-start, 2 doys , +1 day, ug S m-3

S04, Cold-start, 2 days , +2 days, ug S m-3

S04, Inv—start, 2 days , +0, ug S m-3

d) +24hr

f) -+48hr

Vira & Sofiev,

2012



A
Memory of the troposphere

SO,, hourly mean, pg m-3

S04, Cold-start, 2 days ,

+0, ug S m-3

S04, Cold-start, 2 doys , +1 day, ug S m-3

Spatial correlation coefficient, SO,, SO,

S04, Cold-start, 2 days , +2 days, ug S m-3

//

0.6

S

—corr SO2
— corr SO4

&
i
corr coef

// :

S04, Inv—start, 2 days

A/

0.01 005 0z 07 2 5 10 20 40

d) +24hr

f) -+48hr

Vira & Sofiev,

2012



Atmospheric composition DA’s
grand challenge

« Classical assimilation of concentrations makes little
sense: the model forgets the impact much too fast

« Reason: mathematically, the system has short relaxation
time, thus being driven by external forcing rather than by
Initial conditions



How to handle such system?

Ignore the difficulties and system constraints and apply
known techniques with available observations.
State estimation with

> Ol /3D-VAR

Account for the system constraints and chemical links.
State estimation with

> 4D-VAR | EnKF
Expand the control variable

> Include emission fluxes
> Include meteorology
Consider non-classical forms of “DA-looking” techniques

> data fusion
> optimised ensemble
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Computational experiment: SOx Iin Europe

« SILAM experiment 8-22.02.2006
« 3D-VAR, 4D-VAR

 state estimation problem

SO, emission SO, observations

T

vy
7
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b

/ﬁ“‘:‘ N

[ JE
. 7".
Paag™
e L

Vira & Sofiev, 2012




Effect of complexity: 3D-VAR vs 4D-VAR

SO, near-surface concentration, changes due to DA

4D-VAR 3D-VAR
diagonal error covariance non-diagonal error covariance

50°N 50°N

40°N

I

| ; i :

-15-10-5 -1 1 5 10 15 -15-10 -5 - 1 5 10 15

Vira & Sofiev, 2012



Effect on scores
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How to handle such system?

« Expand the control variable: find what has longer impact
> Include emission fluxes
> Include meteorology

« Consider non-classical forms of “DA-looking” techniques

> data fusion

> optimised ensemble



Source term inversion
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Emission correction factor

« Same SOx experiment, now with 4D-VAR towards

emission

Day 1 correction
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Concentration, ug m~*

Comparison of the approaches

4.5

Site: AT 9, Austria
3D-VAR
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Vira & Sofiev, 2012



How to handle such system?

« Consider non-classical forms of “DA-looking” techniques

> data fusion
> optimised ensemble



Data Assimilation vs Data Fusion ®

T ___free-model run
Data assimilation ~ run with assim.
* N ___ fest with assim.

___ fest with fusion
% observations

*

| I | | time

 Data fusion
*

time



Data assimilation vs data fusion

« DA: data are used to adjust model internal variables,
parameters or forcing

> model is “informed” about deviation from the observations and
asked to behave better

 DF: data are used to adjust model output after the
simulations are finished

» model has no clue about its errors, it runs without feedback from
observations

> all corrections are applied as post-processing of the model
predictions

« A simple example: bias correction

* Promising: error of model predictions (e.g., bias) can be
less varying than the predictions themselves



model weights, ens, analysis correl,

Ensemble-based data fusion: works!

Weighting coefficients for individual models, ens-aver. 5 days
T

- - Abs intercept
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Sofiev et al, 2017
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Summary model development / application

« Atmospheric Composition model is a numerical realization of the
mass conservation law

* No universal solution: model is not an image of the real world but an
Image of a few processes of the real world

 Two main types of transport kernels: Lagrangian and Eulerian
> Solve the same dispersion equation

> There is rigorous (well, mostly) transformation from one formalism to another

» Lagrangian: simple things are simple, complicated things are not possible

» Eulerian: simple things are complicated, complicated things are possible
« Take the model, which fits the task

> Emergency response: Lagrangian is popular but Eulerian solutions are
challenging this status-quo

> Atmospheric composition: exclusively Eulerian



Summary model evaluation

 Model verification / validation / evaluation

> evaluation is the most-meaningful objective for the model as a
whole, can (and should) be performed by the model user

> The principle of known quantified quality

« Verification is applied for model sub-systems,
development stage

« Validation is the ultimate goal in model applications, rarely
reached

> Each model application requires tailored evaluation, followed by
decision of the model applicability for the task

> Statistical evaluation measures are task-specific



Summary for Data Assimilation

« Atmospheric composition is tough for data assimilation:
violates almost all assumptions behind DA methods

« Classic methods give ~20% of improvement for the
analysis, next to nothing for the follow-up forecast

« Expansion of control variable is among the most-
promising albeit complicated approaches for improving the
forecast

« Data fusion technology shows very promising first results



